

Anexo 7

Relatório de ensaio acústico realizado no receptor R3

RELATÓRIO DE ENSAIO RE 01/21 - 03/23 - ED01/REV00

RE 01/21 – 03/23 – ED01/REV00

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

ENSAIO	MÉTODO		
Medição dos níveis de pressão sonora. Critério de	NP ISO 1996-1:2019 NP ISO 1996-2:2019		
incomodidade.	Anexo I do Decreto-Lei n.º 9/2007 PT 007 Ed04/Rev00		
Medição dos níveis de pressão sonora. Determinação do nível médio de longa duração.	NP ISO 1996-1:2019 NP ISO 1996-2:2019 PT 006 Ed04/Rev00		

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 - 03/23 - ED01/REV00 PÁGINA 3 DE 25

	FICHA TÉCNICA DO RELATÓRIO DE ENSAIO
	MONITAR, Lda.
	Rua Quinta D'el Rei
AUTOR DO RELATÓRIO	Quinta de Belo Horizonte, lote 266, frações A/B
	3500-612 VISEU
	TECNINVEST
IDENTIFICAÇÃO DO CLIENTE	Rua Padre Américo, 10ª, Esc.2
	1600-548 LISBOA
	Avaliação Acústica no Âmbito do Estudo de Impacte Ambiental do Projeto
TÍTULO DO RELATÓRIO	HVO
N.º DO RELATÓRIO	01/21 – 03/23
Edição/Revisão	ED01/REV00
NATUREZA DA REVISÃO	
RELATÓRIOS ANTERIORES	
ÂMBITO DO RELATÓRIO	ESTUDO DE IMPACTE AMBIENTAL
N.º DA PROPOSTA	01/21 – 03/23
LOCAIS DE MEDIÇÃO	Freguesia de Sines, concelho de Sines, distrito de Setúbal
DATA DE REALIZAÇÃO DAS MEDIÇÕES	1 e 2 de agosto de 2022 e 22 e 23 de março de 2023
DIRETOR TÉCNICO	Assinado por: PAULO GABRIEL FERNANDES DE PINHO Num. de Identificação: 09662186
TÉCNICO OPERACIONAL	Data: 2023.03.28 17:30:46 +0100 Assinado por: Nuno Miguel Ribeiro dos Santos Num. de Identificação: 12118822 Data: 2023.03.28 16:39:48+01'00'
DATA DE PUBLICAÇÃO DO RELATÓRIO	28 DE MARÇO DE 2023

RE 01/21 - 03/23 - ED01/REV00

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

L0558 ISO/IEC 17025 Ensaios

ÍNDICE

PÁGINA 4 DE 25

INTRODUÇÃO	
METODOLOGIA DE MEDIÇÃO	
EQUIPAMENTO DE MEDIÇÃO6	
LOCAIS DE MEDIÇÃO6	
RESULTADOS	
R37	
ANÁLISE DOS RESULTADOS	
ANEXOS	
Carta n.º 1 - Local de medição de ruído	
Dados das medições por banda de 1/3 de oitava	
Dados Meteorológicos	

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 5 DE 25

L0558 ISO/IEC 17025 Fosalos

INTRODUCÃO

O presente Relatório de Ensaio é relativo à avaliação acústica realizada no âmbito do Estudo de Impacte Ambiental do Projeto HVO, localizado na freguesia de Sines, concelho de Sines, distrito de Setúbal. A avaliação acústica foi realizada de acordo com o Regulamento Geral do Ruído (RGR) (Decreto-Lei n.º 9/2007 de 17 de Janeiro).

A presente avaliação acústica foi realizada para verificar a eficácia do plano de intervenção para correção do incumprimento do critério de incomodidade junto do recetor caracterizado pelo local de medição R3, nomeadamente, a instalação de um silenciador nos sistemas de purgadores e de recolha de condensados.

As medições para verificação do critério de incomodidade foram realizadas no período de referência diurno, entardecer e noturno, de acordo com o horário de laboração da atividade em análise. Por solicitação do cliente, e dada a impossibilidade de se proceder à paragem da atividade em análise (Refinaria da Galp), a determinação do ruído residual foi efetuado com recurso ao procedimento de medições previsto no "Guia prático para medições de ruído ambiente - no contexto do Regulamento Geral do Ruído". Foi escolhido um ponto de medição de ruído residual distinto do ponto de medição do ruído ambiente, no qual a influência sonora da fonte em avaliação não era percetível e as demais fontes eram idênticas às verificadas nas condições de ruído ambiente.

Para verificação do cumprimento do critério de exposição máxima, os indicadores de ruído diurno-entardecer-noturno (L_{den}) e noturno (L_n), obtidos para os locais de medição, foram comparados com os valores limite de exposição definidos no artigo 11.º do RGR e tido em consideração que o concelho de Sines atribui, segundo o Plano de Urbanização da Zona Industrial e Logística de Sines, classificação de zona mista à área caracterizada pelo local de medição R3.

METODOLOGIA DE MEDIÇÃO

- NP ISO 1996-1:2019. Acústica. Descrição, medição e avaliação do ruído ambiente. Parte 1: Grandezas fundamentais e métodos de avaliação;
- NP ISO 1996-2:2019. Acústica. Descrição, medição e avaliação do ruído ambiente. Parte 2: Determinação dos níveis de pressão sonora:
- PT 006 Ed04/Rev00. Procedimento Técnico Interno do Laboratório MonitarLab "Determinação do Nível Sonoro Médio de longa Duração";
- PT 007 Ed04/Rev00. Procedimento Técnico Interno do Laboratório MonitarLab "Medição de Níveis de Pressão Sonora Critério de Incomodidade".

Observações: Ensaio realizado pelo laboratório de ensaio da Monitar. O anexo técnico de acreditação pode ser consultado no sítio internet do IPAC através do seguinte link http://www.ipac.pt/pesquisa/ficha_lae.asp?ID=L0558.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 6 DE 25

L0558 ISO/IEC 17025 Ensaios

EQUIPAMENTO DE MEDIÇÃO

Equipamento de medição	Marca/Modelo/N.º de Série
Sonómetro integrador da classe de precisão 1	Brüel & Kjaer/2250/3029996
Despacho de aprovação do Sonómetro	245.71.15.3.33
Boletim de Verificação	VACV15/23
Data de verificação	21/01/2023
Termo-higrómetro-Anemómetro	Kestrel/4500/624826
Certificados de Calibração	CHUM975/22 (Higrómetro e Termómetro); LAC.2022.0101 (Anemómetro)
Data de calibração	25/03/2022 (Higrómetro e Termómetro); 04/04/2022 (Anemómetro)

LOCAIS DE MEDIÇÃO

L OCAL DE MEDIÇÃO	Freguesia	COORDENADAS (PTTM06/ETRS89))	TIPO DE RECETOR	DISTÂNCIA APROXIMADA AO LIMITE MAIS PRÓXIMO DO PROJETO(M)	POSICIONAMENTO RELATIVO AO LIMITE DO PROJETO	A LTURA DE MEDIÇÃO (m)
R3		M: -57720 P: -190525	Habitação isolada	950	Este	1,5

Local de medição R1

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 7 DE 25

ISO/IEC 17025

RESULTADOS

R3

Observações: Nos períodos diurno, entardecer e noturno as principais fontes de ruído identificadas na proximidade do recetor sensível caracterizado pelo local de medição R3, estão associadas à Refinaria da Galp localizada 800 metros a noroeste e a fontes naturais de ruído.

Para avaliação do critério de exposição máxima, tendo em conta que a fonte predominante (refinaria da Galp) tem um funcionamento continuo e homogéneo ao longo dos períodos diurno, entardecer e noturno, foi considerado apenas um patamar de emissão de ruído.

Para análise do critério de incomodidade, na impossibilidade de suspender a atividade da Refinaria da Galp, o ruído residual foi determinado num local distinto do ponto de medição do ruído ambiente, no qual a influência sonora da fonte em avaliação era nula e as demais fontes eram idênticas às verificadas nas condições do ruído ambiente. A localização do ponto de medição do ruído residual pode ser consultada na Carta n.º 1 - Local de medição de ruído.

Notas: Os dados das medições por banda de 1/3 de oitava são apresentados em anexo (ver Dados das medições por banda de 1/3 de oitava). Considera-se que as condições de propagação sonora aquando das medições efetuadas não colocam em causa a comparação com os valores limite definidos no RGR.

CRITÉRIO DE INCOMODIDADE

Para verificação do cumprimento do critério de incomodidade os resultados obtidos foram analisados comparativamente com os valores limite definidos no artigo 13.º e Anexo I do Regulamento Geral do Ruído aprovado pelo Decreto-Lei n.º 9/2007, de 17 de Janeiro.

R3

CRITÉRIO DE INCOMODIDADE

Com base nos dados meteorológicos são apresentadas as condições de propagação sonora da fonte para o recetor nos períodos em que foram efetuadas as medições (ver anexo Dados Meteorológicos.).

F	onte sonora considerada	Outras fontes sonoras	Tipo de solo	
Descrição	Posicionamento da Fonte	Outras forites sorioras	Tipo de solo	
Refinaria da Galp 800 metros a noroeste		- Naturais	Habitações dispersas	

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 8 DE 25

L0558 ISO/IEC 17025 Ensaios

	Período Diurno - Ruído ambiente que inclui o ruído particular						
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}	
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))	
R3 - Med19	22/03/2023	16:27:37	0:15:00	46,5	48,8	2,3	
R3 - Med20	22/03/2023	17:10:54	0:15:00	46,6	47,9	1,3	
R3 - Med21	22/03/2023	17:29:39	0:15:00	46,9	48,3	1,4	
				46,7	48,3	1,6	
R3 - Med28	23/03/2023	11:09:00	0:15:00	47,1	49,6	2,5	
R3 - Med29	23/03/2023	11:24:25	0:15:00	46,9	49,7	2,8	
R3 - Med30	23/03/2023	11:40:34	0:15:00	47,0	49,6	2,6	
				47,0	49,6	2,6	
		L _{Aeq,fast} (particular)		46,8			

Observações:

O ruído particular não apresenta características tonais K1 = 0 dB(A)

O ruído particular não apresenta características impulsivas K2 = 0 dB(A)

LAr= LAeq, fast (particular) + K1 + K2 = 46.8 + 0 + 0 = 46.8 dB(A)

	Período Diurno - Ruído residual						
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}	
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))	
R3 - Med1	01/08/2022	14:36:20	0:15:00	37,9	42,6	4,7	
R3 - Med2	01/08/2022	14:52:39	0:15:00	38,5	41,8	3,3	
R3 - Med3	01/08/2022	15:09:46	0:15:00	37,4	38,4	1,0	
				38,0	41,3	3,3	
R3 - Med10	02/08/2022	14:27:46	0:15:00	38,6	40,8	2,2	
R3 - Med11	02/08/2022	14:42:58	0:15:00	39,4	41,0	1,6	
R3 - Med12	02/08/2022	15:03:25	0:15:00	38,0	40,2	2,2	
				38,7	40,7	2,0	
		L _{Aeq,fast} (residual)		38,3			

Período Diurno

LAr - LAeq,fast(residual) = 46,8 - 38,3 = 9 dB(A)

Período Diurno						
Local de Medição	q (%)	D (dB(A))	Valor limite (dB(A))	L _{Ar} - L _{Aeq} (dB(A))	Resultado da Avaliação	
R3	100	0	5	9	Superior ao valor limite	

q - valor da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

D - valor determinado em função da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

Valor Limite - Valor Limite referente ao período Diurno + D = 5 + 0 = 5 dB(A)

Observações: As conclusões apresentadas são válidas para as condições de funcionamento da fonte sonora em análise semelhantes às ocorridas durante os ensaios.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 9 DE 25

L0558 ISO/IEC 17025 Ensaios

	Período Entardecer - Ruído ambiente que inclui o ruído particular						
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}	
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))	
R3 - Med22	22/03/2023	21:59:51	0:15:00	45,1	46,4	1,3	
R3 - Med23	22/03/2023	22:15:30	0:15:00	46,0	47,2	1,2	
R3 - Med24	22/03/2023	22:35:33	0:15:00	45,2	46,3	1,1	
				45,5	46,7	1,2	
R3 - Med31	23/03/2023	21:05:59	0:15:00	48,4	49,6	1,2	
R3 - Med32	23/03/2023	21:21:16	0:15:00	48,2	49,6	1,4	
R3 - Med33	23/03/2023	21:52:13	0:15:00	48,3	49,1	0,8	
				48,3	49,4	1,1	
		L _{Aeq,fast} (particular)		47,1			

Observações:

O ruído particular não apresenta características tonais K1 = 0 dB(A)

O ruído particular não apresenta características impulsivas K2 = 0 dB(A)

LAr= LAeq, fast (particular) + K1 + K2 = 47,1 + 0 + 0 = 47,1 dB(A)

Período Entardecer - Ruído residual							
Código de	Data da medição	Início do período	Tempo	$L_{Aeq,Fast}$	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}	
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))	
R3 - Med4	01/08/2022	20:00:02	0:15:00	37,3	38,9	1,6	
R3 - Med5	01/08/2022	20:15:13	0:15:00	37,0	39,7	2,7	
R3 - Med6	01/08/2022	20:30:43	0:15:00	37,8	40,6	2,8	
				37,4	39,8	2,4	
R3 - Med13	02/08/2022	20:02:16	0:15:00	37,8	38,8	1,0	
R3 - Med14	02/08/2022	20:18:58	0:15:00	37,8	39,1	1,3	
R3 - Med15	02/08/2022	20:34:18	0:15:00	37,5	38,7	1,2	
				37,7	38,9	1,2	
		L _{Aeq,fast} (residual)		37,5			

Período Entardecer

LAr - LAeq, fast (residual) = 47,1 - 37,5 = 10 dB(A)

Período Entardecer							
Local de Medição	q (%)	D (dB(A))	Valor limite (dB(A))	L _{Ar} - L _{Aeq} (dB(A))	Resultado da Avaliação		
R3	100	0	4	10	Superior ao valor limite		

q - valor da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

D - valor determinado em função da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

Valor Limite - Valor Limite referente ao período Entardecer + D = 4 + 0 = 4 dB(A)

Observações: As conclusões apresentadas são válidas para as condições de funcionamento da fonte sonora em análise semelhantes às ocorridas durante os ensaios.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 10 DE 25

L0558 ISO/IEC 17025 Ensaios

	Pe	ríodo Nocturno - I	Ruído ambiente	que inclui o ruíc	do particular	
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))
R3 - Med25	22/03/2023	23:00:26	0:15:00	44,6	45,2	0,6
R3 - Med26	22/03/2023	23:15:38	0:15:00	45,6	47,4	1,8
R3 - Med27	22/03/2023	23:32:27	0:15:00	45,8	47,1	1,3
				45,4	46,7	1,3
R3 - Med34	23/03/2023	23:00:01	0:15:00	48,5	50,0	1,5
R3 - Med35	23/03/2023	23:16:43	0:15:00	48,6	50,0	1,4
R3 - Med36	23/03/2023	23:51:03	0:15:00	48,1	48,8	0,7
				48,4	49,6	1,2
		L _{Aeq,fast (particular)}		47,1		

Observações:

O ruído particular não apresenta características tonais K1 = 0 dB(A)

O ruído particular não apresenta características impulsivas K2 = 0 dB(A)

LAr= LAeq, fast (particular) + K1 + K2 = 47,1 + 0 + 0 = 47,1 dB(A)

		Perío	do Nocturno - F	Ruído residual		
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq, Imp}	L _{Aeq, Imp} - L _{Aeq,Fast}
Medição		de medição	de medição	(dB(A))	(dB(A))	(dB(A))
R3 - Med7	02/08/2022	00:59:33	0:15:00	36,8	38,8	2,0
R3 - Med8	02/08/2022	01:16:21	0:15:00	36,2	37,4	1,2
R3 - Med9	02/08/2022	01:31:49	0:15:00	37,2	38,2	1,0
				36,8	38,2	1,4
R3 - Med16	03/08/2022	01:19:39	0:15:00	37,4	39,4	2,0
R3 - Med17	03/08/2022	01:37:35	0:15:00	38,8	41,4	2,6
R3 - Med18	03/08/2022	01:54:33	0:15:00	38,3	41,2	2,9
				38,2	40,8	2,6
		L _{Aeq,fast} (residual)		37,5		

Período Nocturno

LAr - LAeq, fast (residual) = 47,1 - 37,5 = 10 dB(A)

		Período No	cturno		
Local de Medição	q (%)	D (dB(A))	Valor limite (dB(A))	L _{Ar} - L _{Aeq} (dB(A))	Resultado da Avaliação
R3	100	0	3	10	Superior ao valor limite

q - valor da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

D - valor determinado em função da relação percentual entre a duração acumulada de ocorrência do ruído particular e a duração total do período de referência

Valor Limite - Valor Limite referente ao período Nocturno + D = 3 + 0 = 3 dB(A)

Observações: As conclusões apresentadas são válidas para as condições de funcionamento da fonte sonora em análise semelhantes às ocorridas durante os ensaios.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 11 DE 25

CRITÉRIO DE EXPOSIÇÃO MÁXIMA

Para verificação do critério de exposição máxima, os resultados obtidos foram analisados comparativamente com os valores limite de exposição definidos no artigo 11.º do Regulamento Geral do Ruído aprovado pelo Decreto-Lei n.º 9/2007, de 17 de Janeiro.

R3

CRITÉRIO DE EXPOSIÇÃO MÁXIMA

Com base nos dados meteorológicos são apresentadas as condições de propagação sonora da fonte para o recetor nos períodos em que foram efetuadas as medições (ver anexo Dados Meteorológicos.).

Período	Fonte sor	ora predominante	Outras fontes sonoras	Tipo de solo
renouo	Descrição	Posicionamento da Fonte	Outras forites sorioras	Tipo de solo
Diurno Entardecer Noturno	Refinaria da Galp	800 metros a noroeste	- Naturais	Habitações dispersas

	Período Diurno												
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq,Fast}								
Medição		de medição	de medição	(dB(A))	(dB(A))								
R3 - Med19	22/03/2023	16:27:37	0:15:00	46,5									
R3 - Med20	22/03/2023	16:47:23	0:15:00	47,4	46,9								
R3 - Med21	22/03/2023	17:10:54	0:15:00	46,6									
R3 - Med28	23/03/2023	11:09:00	0:15:00	47,1									
R3 - Med29	23/03/2023	11:24:25	0:15:00	46,9	47,0								
R3 - Med30	23/03/2023	11:40:34	0:15:00	47,0									
				Ld	46,9								

		Período En	tardecer		
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	L _{Aeq,Fast}
Medição		de medição	de medição	(dB(A))	(dB(A))
R3 - Med22	22/03/2023	21:59:51	0:15:00	45,1	
R3 - Med23	22/03/2023	22:15:30	0:15:00	46,0	45,5
R3 - Med24	22/03/2023	22:35:33	0:15:00	45,2	
R3 - Med31	23/03/2023	21:05:59	0:15:00	48,4	
R3 - Med32	23/03/2023	21:21:16	0:15:00	48,2	48,3
R3 - Med33	23/03/2023	21:52:13	0:15:00	48,3	
				Le	47,1

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

acreditação L0558

L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 12 DE 25

	Período Nocturno												
Código de	Data da medição	Início do período	Tempo	L _{Aeq,Fast}	$L_{Aeq,Fast}$								
Medição		de medição	de medição	(dB(A))	(dB(A))								
R3 - Med25	22/03/2023	23:00:26	0:15:00	44,6									
R3 - Med26	22/03/2023	23:15:38	0:15:00	45,6	45,4								
R3 - Med27	22/03/2023	23:32:27	0:15:00	45,8									
R3 - Med34	23/03/2023	23:00:01	0:15:00	48,5									
R3 - Med35	23/03/2023	23:16:43	0:15:00	48,6	48,4								
R3 - Med36	23/03/2023	23:51:03	0:15:00	48,1									
				Ln	47,1								

Local de		Valor I	imite	Valor m	nedido	Resultado da
Medição	Zona	Lden (dB(A))	Ln (dB(A))	Lden (dB(A))	Ln (dB(A))	Avaliação
R3	Mista	65	55	53	47	Inferior ao valor limite

Observações:

Os recetores sensíveis, cujo campo sonoro foi caracterizado pelo local de medição R3, localizam-se no concelho de Sines cujo Plano Director Municipal ratificado pela Plano de Urbanização da Zona Industrial e Logística de Sines, aprovado pelo Edital n.º 1090/2008 de 7 de novembro, cuja última alteração é o Aviso n.º 18433/2021 de 29 de setembro classifica o local em estudo como zona mista em termos de componente acústica.

Os valores medidos foram considerados representativos da situação de longa duração.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 13 DE 25

L0558 ISO/IEC 17025 Ensains

ANÁLISE DOS RESULTADOS

A avaliação acústica efetuada no âmbito do Estudo de Impacte Ambiental do projeto HVO, foi efetuada de acordo com o RGR. A incerteza associada aos ensaios não é apresentada nem é considerada para efeitos de avaliação de conformidade. Para verificação do cumprimento do critério de exposição foram efetuadas medições nos períodos de referência diurno, entardecer e noturno. Os indicadores de ruído L_{den} e L_n, obtidos junto do local avaliado foi comparado com os valores limite de exposição definidos no artigo 11.º do RGR, sendo possível verificar que, no local avaliado, os valores encontravam-se abaixo dos valores limite.

Para a verificação do critério de incomodidade foram realizadas medições nos períodos de referência diurno, entardecer e noturno, de acordo com o horário de laboração da atividade em análise. Tendo em conta os resultados obtidos, verificase que no local de medição R3, e para todos os períodos de referência, o critério de incomodidade não é cumprido.

A avaliação acústica realizada permitiu verificar que a atividade ruidosa em avaliação não cumpre o artigo 13.º do RGR.

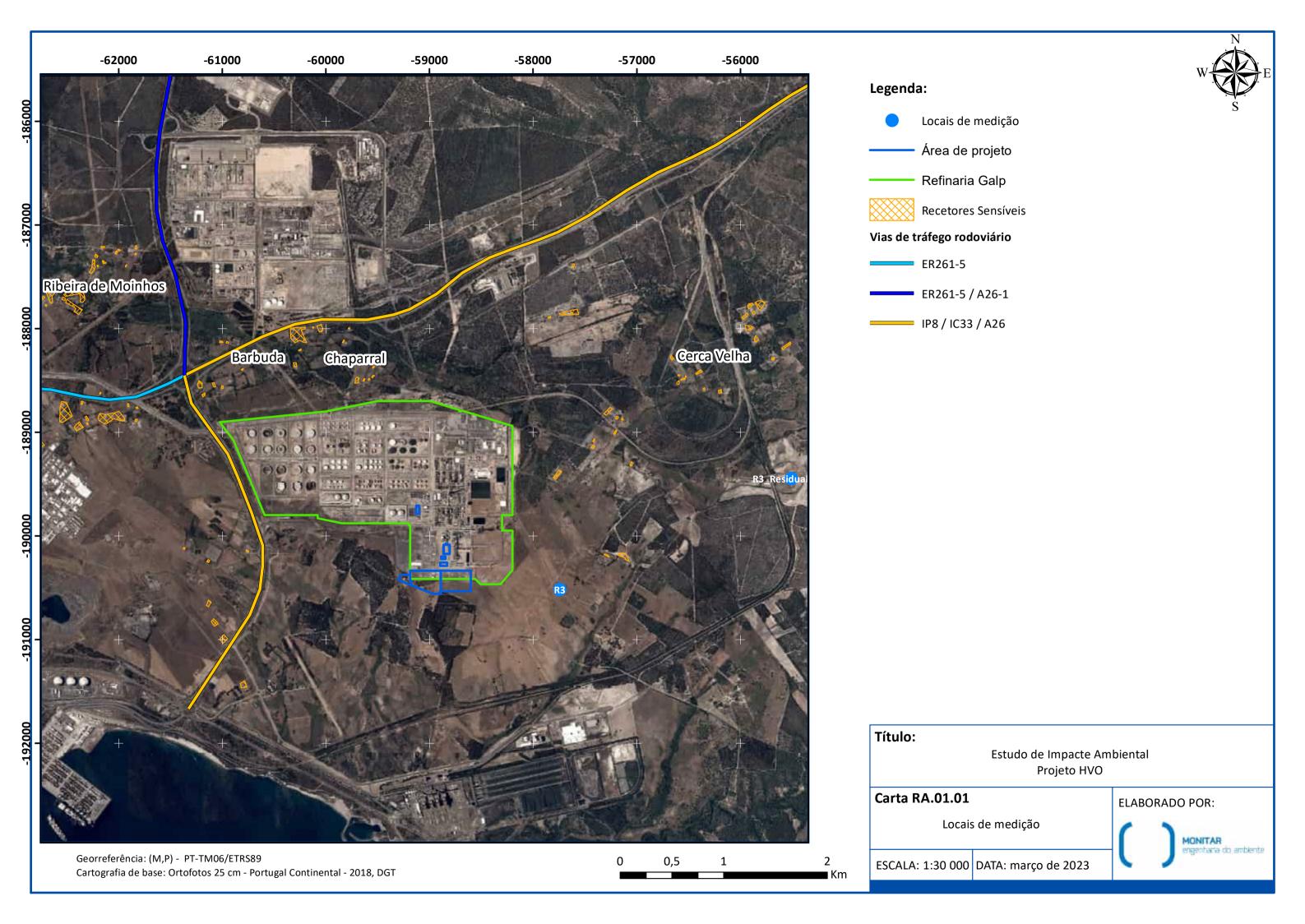
AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 14 DE 25

L0558 ISO/IEC 17025 Ensaios

ANEXOS

- Carta n.º 1 Local de medição de ruído
- Dados das medições por banda de 1/3 de oitava
- Dados Meteorológicos


AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 - 03/23 - ED01/REV00 PÁGINA 15 DE 25

L0558 ISO/IEC 17025 Ensalos

CARTA N.º **1** - **L**OCAL DE MEDIÇÃO DE RUÍDO

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 17 DE 25

DADOS DAS MEDIÇÕES POR BANDA DE 1/3 DE OITAVA

						R3						
N.º da Medição	50 Hz	63 Hz	80 Hz	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz
R3 - Med1	19,8	23,9	23,4	24,5	25,9	27,3	28,9	30,2	32,1	33,5	34,9	36,6
R3 - Med2	20,9	23,4	24,5	25,8	27,3	28,8	30,3	31,6	33,8	34,3	35,8	37,0
R3 - Med3	21,1	23,2	24,9	25,9	27,1	28,8	30,2	32,0	33,7	34,0	35,9	37,6
R3 - Med10	21,1	21,4	22,2	23,3	22,9	24,6	24,3	24,8	28,5	30,9	31,4	33,9
R3 - Med11	21,1	21,6	22,3	22,8	22,6	24,0	23,8	24,6	28,3	30,5	31,1	33,7
R3 - Med12	20,4	20,7	22,5	23,2	22,8	24,2	24,3	24,5	27,9	29,5	32,2	34,9
R3 - Med19	17,1	18,5	21,4	26,1	25,1	21,1	23,4	24,7	25,8	26,4	26,3	25,7
R3 - Med20	18,6	19,3	22,3	22,9	22,5	22,7	24,1	24,1	25,4	26,3	26,3	26,6
R3 - Med21	18,4	21,8	26,1	23,0	23,4	23,5	23,2	22,1	24,7	26,6	26,5	26,2
R3 - Med28	16,9	21,3	19,3	18,7	20,2	20,4	22,5	23,2	23,8	25,7	26,0	27,1
R3 - Med29	17,1	17,9	18,9	18,8	20,4	20,8	23,1	23,9	24,4	25,8	26,1	27,1
R3 - Med30	17,7	19,5	20,3	20,4	20,9	21,6	23,8	24,4	24,3	25,6	25,1	26,3

						R3						
N.º da Medição	800 Hz	1 kHz	1.25 kHz	1.6 kHz	2 kHz	2.5 kHz	3.15 kHz	4 kHz	5 kHz	6.3 kHz	8 kHz	10 kHz
R3 - Med1	36,5	37,8	37,3	35,6	35,8	33,7	32,1	31,1	27,5	24,6	20,7	11,1
R3 - Med2	36,4	37,6	36,9	35,4	35,9	33,5	31,2	28,4	25,9	23,7	19,4	11,4
R3 - Med3	36,9	37,9	36,5	35,6	36,0	33,8	32,1	31,1	29,2	23,5	17,7	11,2
R3 - Med10	35,3	37,3	38,4	37,0	38,1	37,2	36,2	36,8	33,2	25,0	20,7	8,4
R3 - Med11	34,8	37,2	38,6	37,0	38,1	37,5	35,1	35,8	32,5	24,2	18,8	9,1
R3 - Med12	36,2	37,1	37,7	39,9	39,2	35,5	33,0	31,9	29,9	25,3	21,0	9,4
R3 - Med19	26,0	26,3	25,4	25,2	24,7	24,0	24,0	23,3	22,2	19,9	17,1	13,2
R3 - Med20	29,3	28,8	28,8	26,2	24,5	23,7	23,4	23,6	21,2	18,7	15,8	12,1
R3 - Med21	26,0	26,2	25,4	24,0	22,5	21,9	21,6	21,0	19,9	17,7	14,7	11,0
R3 - Med28	27,8	27,7	27,6	27,4	26,8	26,8	26,8	26,1	24,9	23,2	20,2	16,2
R3 - Med29	28,7	29,0	28,3	28,0	27,7	27,7	27,9	28,0	26,2	24,2	21,3	17,3
R3 - Med30	28,6	27,5	26,8	26,2	24,8	24,5	24,5	25,7	22,9	20,2	17,0	13,1

						R3						
N.º da Medição	50 Hz	63 Hz	80 Hz	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz
R3 - Med22	27,9	29,4	27,1	29,0	32,0	32,8	32,9	33,9	33,8	33,2	32,5	33,5
R3 - Med23	24,1	24,8	24,7	25,6	23,1	22,6	23,5	29,0	34,5	35,4	33,6	34,3
R3 - Med24	22,0	24,8	24,9	26,1	23,3	23,0	24,3	29,1	34,1	34,8	32,3	34,1
R3 - Med31	21,2	22,6	25,5	27,7	27,8	28,4	29,1	28,9	31,8	35,7	36,3	37,4
R3 - Med32	21,7	22,9	25,8	27,8	27,9	28,4	29,3	29,1	31,9	35,9	36,3	37,4
R3 - Med33	21,7	22,4	25,9	28,6	28,3	28,9	29,7	28,9	30,8	34,7	36,2	37,2
R3 - Med4	15,1	18,1	18,4	20,8	19,3	20,0	23,3	25,4	26,1	27,7	26,7	26,9
R3 - Med5	13,9	17,4	18,0	20,2	18,5	18,4	21,5	23,9	24,6	26,6	26,1	27,3
R3 - Med6	16,2	19,5	19,5	21,6	20,1	20,6	24,1	25,9	26,0	27,5	26,5	27,0
R3 - Med13	16,6	18,5	19,8	20,9	20,8	21,5	23,3	23,7	25,3	27,0	27,4	27,5
R3 - Med14	18,2	20,0	20,7	20,4	20,7	22,2	23,5	23,9	25,2	27,6	27,7	26,7
R3 - Med15	18,5	19,9	19,9	22,1	21,6	22,1	23,9	24,8	26,4	28,4	28,5	28,2

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

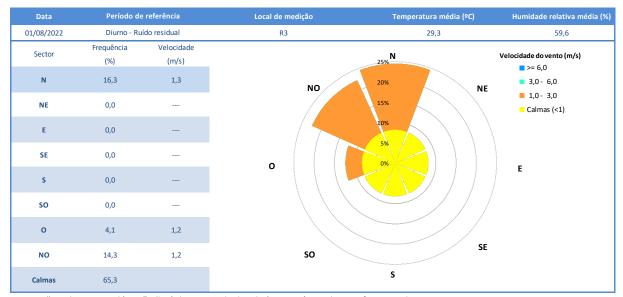
L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 18 DE 25

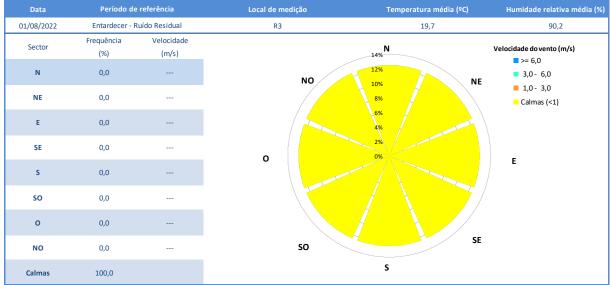
						R3						
N.º da Medição	800 Hz	1 kHz	1.25 kHz	1.6 kHz	2 kHz	2.5 kHz	3.15 kHz	4 kHz	5 kHz	6.3 kHz	8 kHz	10 kHz
R3 - Med22	33,7	33,7	33,0	32,8	32,8	30,0	26,6	21,0	13,5	10,6	8,9	7,5
R3 - Med23	35,8	36,5	36,7	36,2	36,4	34,2	30,8	25,1	17,5	14,0	10,4	7,8
R3 - Med24	35,2	35,7	35,6	34,8	35,3	33,3	29,2	23,4	16,5	13,1	11,0	9,2
R3 - Med31	39,2	40,2	40,0	38,7	38,8	36,2	30,5	22,7	13,3	8,3	6,7	5,4
R3 - Med32	39,3	40,0	39,7	38,4	38,6	35,8	30,0	22,2	12,9	8,5	6,8	5,5
R3 - Med33	38,9	40,6	40,2	38,9	38,0	36,2	30,7	22,7	12,4	7,7	6,6	5,2
R3 - Med4	28,0	28,4	26,9	23,9	20,1	16,6	15,5	17,0	14,7	11,0	8,9	6,8
R3 - Med5	28,9	28,6	26,8	23,2	21,6	18,6	16,3	17,9	14,9	10,6	8,5	6,7
R3 - Med6	28,6	29,8	27,6	24,2	19,9	16,5	15,8	20,0	16,9	11,9	10,0	6,9
R3 - Med13	26,9	26,7	26,0	25,0	24,2	24,0	23,8	22,9	21,6	19,9	16,8	13,0
R3 - Med14	29,0	29,7	25,6	23,5	21,5	20,9	20,6	19,6	18,3	16,8	13,9	10,6
R3 - Med15	26,9	26,3	25,5	23,8	19,7	18,2	17,8	16,5	15,0	13,2	10,6	8,0

R3												
N.º da Medição	50 Hz	63 Hz	80 Hz	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz
R3 - Med7	22,4	24,9	24,6	24,0	21,4	21,0	23,5	28,8	34,1	33,8	32,0	33,2
R3 - Med8	21,4	24,6	24,6	25,0	24,1	22,9	24,3	29,7	33,8	34,9	33,5	34,3
R3 - Med9	24,7	26,8	26,2	25,7	23,3	24,0	29,0	32,6	34,4	33,8	35,4	36,2
R3 - Med16	21,7	22,1	25,1	27,2	27,9	28,4	29,5	28,8	31,1	35,4	36,5	37,1
R3 - Med17	21,9	23,5	26,1	27,4	28,1	28,1	28,1	28,6	30,9	33,7	36,6	39,1
R3 - Med18	21,4	23,4	26,4	27,1	28,0	28,2	28,1	28,9	30,5	32,7	36,0	38,3
R3 - Med25	20,8	23,3	25,7	24,9	24,7	24,8	22,7	22,5	25,0	25,0	24,9	24,2
R3 - Med26	19,9	22,1	24,9	24,8	23,4	23,2	21,6	21,9	25,0	25,3	24,4	22,5
R3 - Med27	20,5	24,4	26,2	26,4	25,2	24,6	22,7	22,6	25,3	26,0	25,6	24,4
R3 - Med34	21,1	18,9	19,0	23,9	24,6	27,6	20,8	23,7	23,7	22,3	23,3	24,5
R3 - Med35	18,8	22,8	23,3	23,3	24,8	24,1	23,6	21,6	22,8	24,0	25,6	28,2
R3 - Med36	17,7	21,6	18,1	23,4	26,4	26,1	26,1	20,3	21,3	21,9	23,7	25,2

R3												
N.º da Medição	800 Hz	1 kHz	1.25 kHz	1.6 kHz	2 kHz	2.5 kHz	3.15 kHz	4 kHz	5 kHz	6.3 kHz	8 kHz	10 kHz
R3 - Med7	34,3	35,0	35,2	34,4	34,6	32,4	27,7	21,8	13,9	9,5	8,8	7,6
R3 - Med8	35,5	36,2	36,6	35,6	35,4	33,3	29,0	25,3	22,1	20,4	18,2	14,8
R3 - Med9	35,5	36,8	35,7	34,7	34,5	31,8	27,5	22,2	17,9	15,7	14,3	12,0
R3 - Med16	39,3	40,3	40,1	39,6	38,7	36,5	31,1	23,2	12,9	7,7	6,6	5,2
R3 - Med17	39,9	40,3	39,9	38,8	39,1	36,4	31,0	24,3	15,6	11,3	9,6	7,7
R3 - Med18	39,5	40,1	39,6	37,9	38,4	35,9	30,5	23,9	14,6	10,2	8,5	6,8
R3 - Med25	24,5	24,8	24,6	22,9	19,5	20,5	17,0	12,8	21,3	10,5	7,9	6,5
R3 - Med26	23,1	24,2	24,1	22,6	20,2	22,7	18,0	13,1	21,0	10,4	7,8	6,4
R3 - Med27	24,8	25,4	24,7	22,9	20,1	20,4	16,2	12,7	20,0	10,4	8,3	6,8
R3 - Med34	27,0	27,1	28,5	26,2	22,8	18,0	13,8	11,8	18,9	8,1	7,0	5,8
R3 - Med35	32,5	29,8	28,2	26,7	24,3	19,7	14,1	12,3	18,7	8,4	7,1	5,8
R3 - Med36	29,3	28,5	29,0	28,3	26,9	22,1	17,1	12,9	15,5	8,9	7,5	6,2

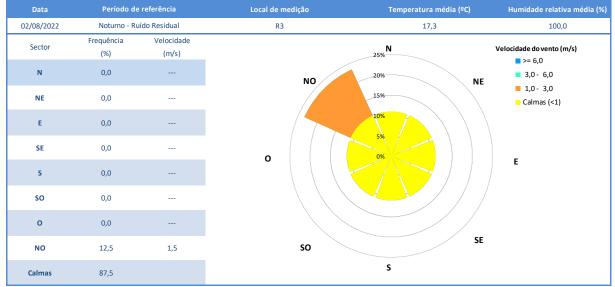


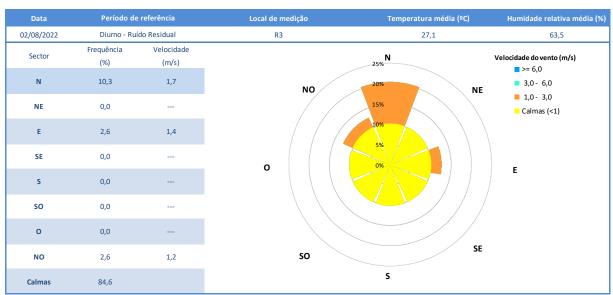
AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO


RE 01/21 – 03/23 – ED01/REV00 PÁGINA 19 DE 25

DADOS METEOROLÓGICOS

Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.

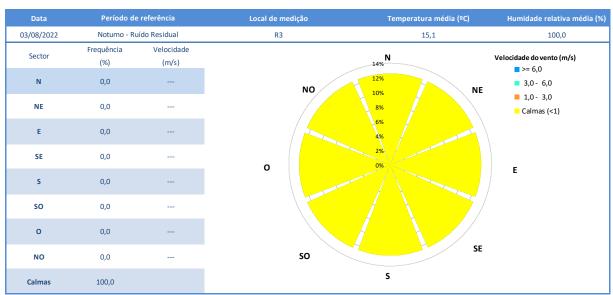

Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.


AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 20 DE 25

Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.

Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.


AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

RE 01/21 - 03/23 - ED01/REV00 PÁGINA 21 DE 25

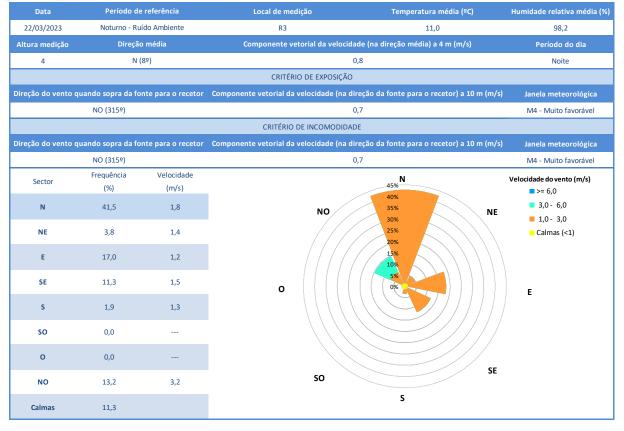
Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.


Nota: A "Janela Meteorológica" não é determinada devido à inexistência de uma fonte predominante.

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 22 DE 25

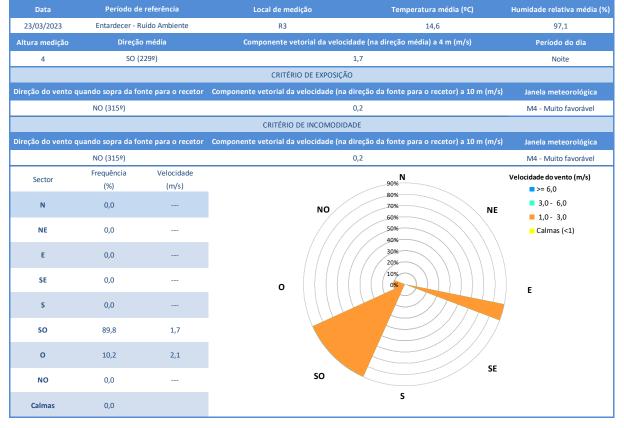

Data	Período de	referência	Humidade relativa média (%)						
22/03/2023	Entardecer - Ru	uído Ambiente	R3	12,0	100,0				
Altura medição	Direção	média	Componente vetorial da velocidade (na dire	Período do dia					
4	N (34	46º)	1,9		Noite				
			CRITÉRIO DE EXPOSIÇÃO						
Direção do vento o	quando sopra da for	nte para o recetor	Componente vetorial da velocidade (na direção da fo	onte para o recetor) a 10 m (m/s)	Janela meteorológica				
Sem fo	nte dominante identi	ficada							
			CRITÉRIO DE INCOMODIDADE						
Direção do vento o	quando sopra da for	nte para o recetor	Componente vetorial da velocidade (na direção da fo	onte para o recetor) a 10 m (m/s)	Janela meteorológica				
	NO (315º)		2,2		M4 - Muito favorável				
Sector	Frequência (%)	Velocidade (m/s)	100	N 0%	Velocidade do vento (m/s) ⇒= 6,0				
N	96,2	2,0	NO 80	NE NE	3,0 - 6,0				
NE	0,0		60	0% 0% 0%	■ 1,0 - 3,0 ■ Calmas (<1)				
E	0,0		30	9% 19%					
SE	0,0			0%	E				
S	0,0			<i></i>					
so	0,0								
0	0,0			SE					
NO	3,8	1,7	SO						
Calmas	0,0			S					

AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO

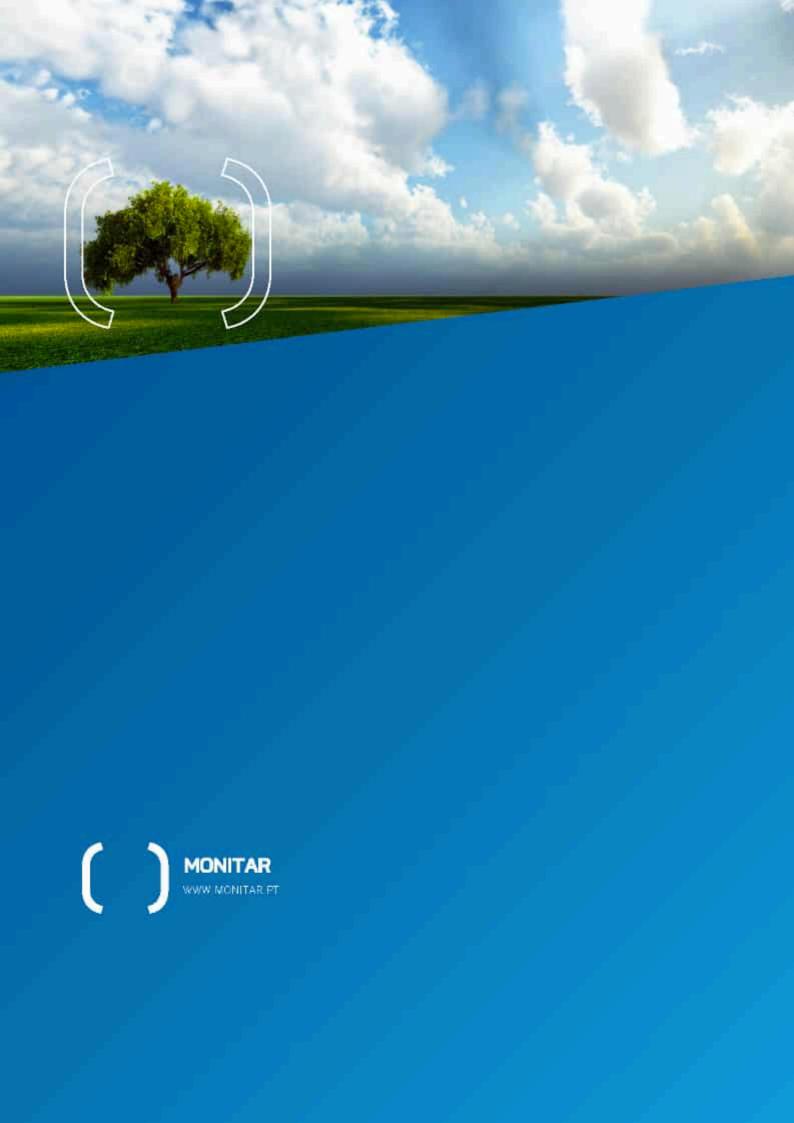
L0558 ISO/IEC 17025 Ensaios

RE 01/21 - 03/23 - ED01/REV00 PÁGINA 23 DE 25

Data	Período de	referência	Temperatura média (ºC)	Humidade relativa média (%)				
23/03/2023	Diurno - Ruíd	lo Ambiente	R3	17,2	86,7			
Altura medição	Direção	média	Componente vetorial da velocidade (na	direção média) a 4 m (m/s)	Período do dia			
4	SO (2	43º)	1,3		Dia			
			CRITÉRIO DE EXPOSIÇÃO					
Direção do vento q	quando sopra da for	nte para o recetor	Componente vetorial da velocidade (na direção d	a fonte para o recetor) a 10 m (m/s)	Janela meteorológica			
	NO (315º)		0,5		M1 - Desfavorável			
			CRITÉRIO DE INCOMODIDADE					
Direção do vento q	quando sopra da for	nte para o recetor	Componente vetorial da velocidade (na direção d	a fonte para o recetor) a 10 m (m/s)	Janela meteorológica			
	NO (315º)		0,5		M1 - Desfavorável			
Sector	Frequência (%)	Velocidade (m/s)		N 60%	Velocidade do vento (m/s) ■ >= 6,0			
N	0,0		NO /	50% NE	3,0 - 6,0			
NE	0,0			30%	■ 1,0 - 3,0 Calmas (<1)			
E	0,0			20%				
SE	0,0		0	0%	E			
S	0,0				_			
so	50,0	1,4						
О	26,9	1,8		SE				
NO	0,0		so	***************************************				
Calmas	23,1			S				



AVALIAÇÃO ACÚSTICA NO ÂMBITO DO ESTUDO DE IMPACTE AMBIENTAL DO PROJETO HVO


acreditação L0558

L0558 ISO/IEC 17025 Ensaios

RE 01/21 – 03/23 – ED01/REV00 PÁGINA 24 DE 25

Data	Período de		Local de medição Temperatura média	(ºC) I	Humidade relativa média (%		
23/03/2023	Noturno - Ruí	do Ambiente	R3 14,9		100,0		
Altura medição	Direção	média	Componente vetorial da velocidade (na direção média) a 4 m (n	1/s)	Período do dia		
4	SO (2		1,4		Noite		
			CRITÉRIO DE EXPOSIÇÃO				
Direção do vento o	quando sopra da foi	nte para o recetor	Componente vetorial da velocidade (na direção da fonte para o recetor)	a 10 m (m/s)	Janela meteorológica		
	NO (315º)		-0,6		M4 - Muito favorável		
			CRITÉRIO DE INCOMODIDADE				
Direção do vento o	quando sopra da foi	nte para o recetor	Componente vetorial da velocidade (na direção da fonte para o recetor)	a 10 m (m/s)	Janela meteorológica		
	NO (315º)		-0,6		M4 - Muito favorável		
Sector	Frequência (%)	Velocidade (m/s)	N 60%	V	/elocidade do vento (m/s) ■ >= 6,0		
N	0,0		NO 50%	NE	3,0 - 6,0		
NE	0,0		30%		1,0 - 3,0Calmas (<1)		
Е	0,0		20%				
SE	0,0		0 0%		E		
S	33,3	1,6					
so	58,8	1,4					
O	0,0						
NO	0,0		so	SE			
Calmas	7,8		S				

Anexo 8

HVO@GALP - Relatório Avaliação Solos e Águas Subterrâneas Fase 2 - Apresentação de Resultados Analíticos

Avaliação da Qualidade GALP Energia, S. A. HIVO	do Solo																							
Correspondência com pontos de arri	ostragem de outras campanha Localzação Georreferenciação Tipo de amostro Material amostrad da amostragem (AAAA-MM-OC	6: Ortober 2022	HVO solo 4	HVO solo 7		Sines 87° 57.000%; 8° 48.335% Liners 5010 October 2022	Sines 12" 57,047%; 8" 48,336 Liners Solo October 2022		Sines 57 57.045%; 81 48.312% Liners 5olo October 2022 1.5	HVO solo 19 — Sines sir's 57.060%; 8' 48.290' Liners Solo October 2022	HVO solo 20	HVO solo 23	Sines 87' 57.644%; 8' 48.269% Liners Solo October 2022	Sines 97' 57.061%; 8' 48.244 Liners Solo October 2022		Sines Sines Sines Sines Sines Sines October 2022	Sines Sines VI7" 57.04TN; 8" 48.223V Liners Solo October 2022	Sines ST-57.05TN; 8*48.297V Liners Solo October 2022	Sines 17' 57.046%; 8' 48.196' Liners Solo October 2022	Sines Sines W17' 57.060'N; 8' 48.174'W Liners Solo October 2022	Sines 17' 57.043%; 8' 48.175'\ Liners Solo October 2022	Sines 97 57.014'N; 8' 48.175'V Liners Solo October 2022	Sines 7' 57,016'N; 8' 48,274'V Liners Solo October 2022 1.5	FIVE NOT S
	VR (1) VCR (1) VEI (1) VFN (1) (mg/kg de massa seca) 40.00 1E.00 670.00 8.00		<0,50 <0,50 <0,50 3,41 0,015 <1,0 <0,40	<0,50 1,26 7,56 0,081 <1,0	1.5 VA <0,50 0,84 6.46 0.03 <1,0	VA <0,50 1,64 26.7 0,113	VA <0,50 2,70 21.2 0,288 2,3 <0,40	<0,50	VA <0,50 3,97 30.1 0,463	VA <0,50 2,56 32.5 0,448 3,0 -0,40	VA <0,50 2,95 18.8 0,255	VA <0,50 3,52 24.1 0,312	VA (mg/kg de massa seca) <0,50 1,84 14.8 0,180	VA <0,50 2,69 27.6 0,355	VA <0.50 2,31 21.9 0,333	<0,50 1,47 12.2 0,118	VA <0,50 3,70 20.8 0,319	VA <0,50 0,94 6.45 0,074	VA <0,50 2,78 32.3 0,371	VA <0,50 0,92 14,3 0,98 <1,0 <0,40	VA <0,50 2,16 43.5 0,348 2,5 <0,40	VA ≪0,50 ≪0,50 152 ≪0,010	VA <0,50 2,74 31.5 0,308	VA VA 0,50 1,08 11.7 0,094 <1,0 9,40
crómio VI	40.00 18.00 570.00 19.00	<0,060	1,4 <0,20 <1,0 1,12 0,064	4,2 0,68 1,2 3,26 0,164	3,2 0,55 1,4 2,03 0,082	1,4 <0,40 5,9 0,82 3,3 4,69 0,218 <0,030	9,8 2,55 5,5 9,45 0,405	36.6 0,404 3,4 -0,40 14,2 3,56 6,7 12,2 0.24 0.02	3,6 <0,40 21,9 7,86 8,0 12,7 0.25 0.02	3,0 +0,40 14,4 3,93 7,0 13,0 0.20 0.03	1,4 +0,40 8,7 2,86 4,1 9,38 0.28 0.02	1,5 <0,40 11,6 4,05 4,7 10,6 0.25	1,1 <0,40 8,2 2,16 3,6 6,39 0,21	2,1 <0,40 34,4 5,78 6,6 30,9 0,232 0,018	1,9 <0,40 9,2 3,07 6,2 11,3 0,260 0,019	1,0 +0,40 5,5 0,93 1,8 4,59 0.583 0.027	2,3 <0,40 11,9 5,50 6,2 8,67 0,259 0,010	<1,0 <0,40 3,6 0,89 1,6 3,10 0.194 0.011	2,0 +0,40 12,3 5,01 6,7 9,93 0,227 0,036	3,8 0,85 1,9 3,83 0,159	2,5 <0,40 11,2 3,38 5,8 10,3 0.354 0.006	<1,0 <0,40 1,2 <0,20 <1,0 <0,50 <0,000 <0,000	2,1 <0,40 11,3 3,53 5,3 20,5 0.173 0.026	4,5 0,99 1,7 3,42 0,184
tálio	3.30 270,00 40,00 40,00 5.50 1.30 33,00 340,00	40,000 41,0 40,50 41,00 40,50 0,102 0,85 43,0	<0,40 <1,0 <0,50 <1,00 <0,50 0,190 1,82 <3,0	<0,40 2,4 <0,50 <1.00 <0,50 0,156 5.48 3,4	40,40 1,2 <0,50 <1.00 <0,50 0,121 2,98 9,2	40,40 2,9 <0,50 <1,00 <0,50 0,212 6,62 4,6	40,40 6,6 40,50 <1,00 40,50 0,380 10,9 13,1	0,48 9,4 <0,50 <1,00 <0,50 0,515 14.8 20,8	0,55 9,9 <0,50 <1,00 <0,50 0,571 15,1 17,8	<0,40 10,4 <0,50 <1,00 <0,50 0,501 13.6 20,3	**************************************	0,40 6,4 <0,50 <1,00 <0,50 0,392 10.7 14,3	40,40 4,7 <0,50 <1,00 <0,50 0,310 6,16 9,8	0,44 8,2 <0,50 <1,00 <0,50 0,487 12.8 17,4	0,41 7,1 <0,50 <1,00 <0,50 0,459 10,2 14,0	43,40 2,6 40,50 \$1,00 \$0,50 0,223 5,62 \$3,0	40,40 7,0 <0,50 <1,00 <0,50 0,411 11,0 12,7	<0,40 2,4 <0,50 <1,00 <0,50 0,172 3,57 3,6	**************************************	40,40 3,8 <0,50 <1,00 <0,50 0,158 3,70 4,4	0,35 9,1 <0,50 <1,00 <0,50 0,355 10,8 22,9	40,40 43,9 40,50 41,00 40,50 40,100 0,56 43,0	0,42 7,5 <0,50 <1,00 <0,50 0,377 10,6 19,0	40,40 2,4 <0,50 <1,00 <0,50 0,177 3,93 5,3
Compositor promittory Hidrocarbonistor monaremáticos Benissen edifeno	0.32 34.00 1.10 6.40 26.00	<0,010 <0,040 <0,020 <0,020 <0,00	<0,010 <0,040 <0,020 <0,020 <0,030	40,010 40,040 40,020 40,10 40,030	<0,010 <0,040 <0,020 <0,10 <0,000	<0,030 <0,040 <0,020 <0,030 <0,030	40,000 40,040 40,020 40,100 40,000	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,040 <0,020 <0,020 <0,030	<0,010 <0,040 <0,020 <0,10 <0,00	<0,010 <0,040 <0,020 <0,10 <0,030	<0,000 <0,040 <0,020 <0,030 <0,030	<0,010 <0,040 <0,020 <0,10 <0,030	<0,000 <0,040 <0,000 <0,00 <0,000	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,010 <0,020 <0,020 <0,030	<0,010 <0,040 <0,020 <0,10 <0,030	<0,010 <0,040 <0,020 <0,030 <0,030	<0,030 <0,040 <0,020 <0,10 <0,00	<0,010 <0,040 <0,020 <0,10 <0,030	40,000 40,040 40,000 40,10 40,10 40,000
benzo(d,e,t)criseno (benzo)ajpireno) benzo(e)acefenantrileno (benzo(b)fluoranteno)	21.00 0.15 0.67 0.96 0.90 0	<0,010 <0,010 <0,0040 <0,010 <0,0050 <0,010	<0,010 <0,000 <0,0000 <0,010 <0,010 <0,010	40,010 40,0040 40,0050 40,010 40,010 40,010	<0,010 <0,000 <0,000 <0,010 <0,0050 <0,010	<0,030 <0,030 <0,0040 <0,0040 <0,000 <0,000 <0,030	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,010 <0,0040 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,0040 <0,005 <0,0050 <0,010 <0,010	<0,010 <0,010 <0,0040 <0,0050 <0,0050 <0,010	<0,010 <0,010 <0,0040 <0,010 <0,0050 <0,010	<0,010 <0,010 <0,0040 <0,0050 <0,0050 <0,010	<0,010 <0,000 <0,000 <0,000 <0,000 <0,000 <0,010 <0,010	<0,020 <0,020 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,010 <0,0040 <0,0050 <0,010 <0,010	40,000 40,000 40,000 40,0050 40,000 40,000	<0,010 <0,010 <0,0040 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 -0,0040 -0,010 -0,0050 -0,010 -0,010	<0,010 <0,010 <0,0040 <0,0050 <0,0050 <0,010	<0,010 <0,010 <0,0040 <0,010 <0,010 <0,010 <0,010	<0,010 <0,000 <0,000 <0,0050 <0,0050 <0,010 <0,010	<0,030 <0,030 <0,030 <0,030 <0,0050 <0,030 <0,030	<0,010 <0,010 <0,0040 <0,0050 <0,0050 <0,010	-0,000 -0,000 -0,0040 -0,0050 -0,0050 -0,000
dibenco(a, h)antraceno fenantreno fluoranteno fluoreno indeno[1,2,3-c,d]pireno	9.00 0.95 9.00 0.10 12.00 9.00 62.00 0.76	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,010 40,010 40,010 40,010 40,010 40,010 40,010	-0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,010 40,010 40,010 40,010 40,010 40,010 40,010	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,010 40,010 40,010 40,010 40,010 40,010 40,010	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,000 40,000 40,000 40,000 40,000 40,000 40,000
nafitaleno olireno Hidrocarbonetos halogenados Hidrocarbonetos halogenados volteis bromodificiorometano bromodificiorometano bromodimio (tribromometano) bromodimio (tribromometano)	9.60 96.00 1.50 0.61 0.03	<0,010 <0,010 <0,010 <0,000 <0,000 <0,000 <0,010	<0,010 <0,010 <0,020 <0,020 <0,050 <0,010	40,010 40,010 40,020 40,040 40,050 40,010	<0,010 <0,010 <0,020 <0,040 <0,050 <0,010	<0,030 <0,030 <0,040 <0,050 <0,030	40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,020 <0,040 <0,050 <0,010	<0,010 <0,010 <0,010 <0,010 <0,040 <0,050 <0,010	<0,010 <0,010 <0,010 <0,000 <0,000 <0,010	<0,010 <0,010 <0,020 <0,050 <0,050 <0,010	<0,010 <0,010 <0,020 <0,040 <0,050 <0,010	40,010 40,010 40,020 40,040 40,000 40,010	<0,030 <0,030 <0,030 <0,040 <0,050 <0,050	<0,010 <0,010 <0,020 <0,040 <0,050	40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,020 <0,040 <0,050 <0,010	<0,010 <0,010 <0,020 <0,040 <0,050 <0,010	<0,010 <0,010 <0,010 <0,010 <0,050 <0,010	<0,010 <0,010 <0,020 <0,090 <0,050 <0,010	40,010 40,010 40,020 40,040 40,050 40,010	<0,030 <0,030 <0,030 <0,040 <0,030 <0,030	<0,010 <0,010 <0,020 <0,040 <0,030 <0,010	40,000 40,000 40,000 40,000 40,000 40,000
dibromodorometano 1,2-dibromoetano didorodifluorometano 1,1-dicloroetano 1,2-dicloroetano 1,1-dicloroetano	0.05 2.30 0.05 16.00 0.47 0.05 0.05 1.00 1.30 1.30	<0,010 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,020 <0,000 <0,000 <0,000 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	-0.010 -0.000 -0.000 -0.000 -0.010 -0.000 -0.000 -0.000 -0.000	-0.010 -0.020 -0.0000 -0.000 -0.000 -0.000 -0.0000 -0.0000 -0.0000 -0.0000	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,020 <0,030 <0,030 <0,050 <0,010 <0,030 <0,030 <0,030 <0,030 <0,030	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,030 <0,050 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,030 <0,030 <0,010 <0,010 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,000 <0,000 <0,000 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	<0.000 <0.0000 <0.0000 <0.000 <0.000 <0.0000 <0.0000 <0.0000	<0,020 <0,020 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,020 <0,000 <0,000 <0,010 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	<0,000 <0,000 <0,000 <0,000 <0,000 <0,0030 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,000 <0,000 <0,000 <0,010 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,020 <0,030 <0,030 <0,030 <0,030 <0,030	<0,010 <0,020 <0,030 <0,030 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	<0,010 <0,020 <0,020 <0,020 <0,020 <0,010 <0,010 <0,0030 <0,0030 <0,0030 <0,0030	40,010 40,000 40,000 40,000 40,010 40,010 40,000 40,000 40,000 40,000	<0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,010 <0,020 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0	-0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
3.3-dicloropropeno (cis & trans) tetracioreto de carbono (tetraciorometano) 1.1.1.2-tetracioroetano 1.1.2.2-tetracioroetano tetracioroetileno 1.1.1.4/cioroetano	1.60 0.16 0.05 0.21 0.09 0.05 1.90 6.10	<0.050	<pre><0,010 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010</pre>	40,010 40,050 40,10 40,010 40,010 40,010 40,010	40,010 <0.050 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0,000 <0,000 <0,10 <0,00 <0,00 <0,010 <0,010 <0,000	0,000 <0.050 <0,10 0,000 <0.010 <0,010 <0,000 <0,000	<0,010 <0.050 <0.10 <0,010 <0.010 <0.010 <0,010 <0,010	<0,010 <0,050 <0,10 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010	<0,010 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010	<0,028 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010	40,000 40,000 40,000 40,000 40,000 40,000	<0.010 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.020 <0.020	<0,010 <0.050 <0,10 <0,010 <0.010 <0.010 <0,010 <0,010 <0,010	40,000 <0.050 <0.010 <0.010 <0.010 <0.010 <0.000 <0.000	<0,010 <0.050 <0,10 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,000 <0,000 <0,10 <0,000 <0,010 <0,010 <0,010 <0,010	<0,010 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010	<0,027 <0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010	40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,000 <0,050 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00	49,911 40,050 40,10 49,910 40,010 40,910 40,910 40,910	40,000 40,000 40,00 40,000 40,000 40,000 40,000
tricloroetileno triclorofluorometano	2.40 2.40 1.20 9.60 0.25		<0,010 <0,050 <0,010 <0,005 <0,005 <0,005	40,010 40,000 40,000 40,000 40,000 40,000 40,000	<0.010 <0.050 <0.005 <0.005 <0.005 <0.005 <0.005	<0,000 <0,000 <0,000 <0,005 <0,005 <0,005	<0,000 <0,000 <0,000 <0,005 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,005 <0,005 <0,005 <0,005	<0,010 <0,050 <0,010 <0,005 <0,005 <0,005 <0,005	<0,010 <0,000 <0,000 <0,005 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,010 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,010 <0,005 <0,005 <0,005	40,000 40,000 40,000 40,005 40,005 40,005 40,000	<0,010 <0,050 <0,010 <0,005 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,005 <0,005 <0,005 <0,005	<0,000 <0,000 <0,000 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,005 <0,005 <0,005 <0,005	<0,010 <0,000 <0,000 <0,000 <0,005 <0,005 <0,005	<0,010 <0,000 <0,000 <0,005 <0,005 <0,005 <0,005	<0,010 <0,050 <0,050 <0,005 <0,005 <0,005 <0,005	40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,000 <0,000 <0,000 <0,005 <0,005 <0,005	<0,010 <0,010 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005	40,000 40,000 40,000 40,000 40,000 40,000 40,000
2.4-titulo demonstrato Clorofenol 2.dorofenol 2.4.5-triclorofenol 2.4.5-triclorofenol 2.4.5-triclorofenol	3.10 2.90 9.10 2.10	40,005	<0,010 <0,0050 <0,0050 <0.010	40,010 40,0050 40,0050 40,010	<0,010 <0,0050 <0,0050 <0.010	<0,010 <0,010 <0,0050 <0.010 <0.010	<0,010 <0,0050 <0,010 =0,010	<0,005 <0,010 <0,0050 <0,010 <0010	<0,005 <0,010 <0,0050 <0,010 <0.010	<0,005 <0,010 <0,0050 <0.010 <0.010	<0,005 <0,010 <0,0050 <0.010 <0010	<0,005 <0,010 <0,0050 <0.010 <0.010	<0,005 <0,0050 <0,0050 <0.010	<0,010 <0,0050 <0,0050 <0.010	<0,010 <0,0050 <0,0050 <0,010	<0,010 <0,0050 <0,0050 <0.010	<0,005 <0,010 <0,0050 <0,010 <0010	<0,005 <0,010 <0,0050 <0.010 <0.010	<0,010 <0,0050 <0,0050 <0.010	<0,005 <0,010 <0,0050 <0,010 <0010	40,005 40,010 40,0050 40,010 40,010	<0,005 <0,000 <0,000 <0,000 <0,000	<0,010 <0,010 <0,0050 <0,010 ±0,010	<0,010 <0,0050 <0,0050 +0,000
Hidrocarbonetos de petróleo (1924) Nidrocarbonetos de petróleo C ₁₁ - C ₂₂ (una 2733) Nidrocarbonetos de petróleo C ₂₂ - C ₂₃ (una 2733) Nidrocarbonetos de petróleo C ₂₂ - C ₂₃ Nidrocarbonetos de petróleo C ₂₂ - C ₂₃ Nidrocarbonetos de petróleo C ₂₃ - C ₂₃ Cétonia	25.00 220.00 MANUAL MAN	<5,0	<5,0 <10 <5,0 <10 <5,0 <1,0 <0.50	<5,0 <5,0 <10 <5,0 <1,0 <5,0	<5,0 <5,0 <10 <5,0 <10 <5,0	4,80 4,0 410 4,0 4,0 4,0	<0.00 <0.0 <10 <0.0 <1,0 <0.50	4,0 4,0 410 4,0 4,0 4,0	<0.00 <0.0 <10 <0.0 <0.0 <0.50	<5,0 <10 <10 <5,0 <1,0 <7,0	4,80 4,0 410 4,0 41,0 40,50	<5,0 <10 <10 <3,0 <1,0 <2,0	<0,00 <0,0 <10 <0,0 <1,0 <0,50	4,80 4,0 410 4,0 41,0 6,050	<5,0 <5,0 <10 <5,0 <1,0 <7,0	<5,0 <5,0 <10 <5,0 <1,0 q,50	<.0 <.0 <.0 <.0 <.0 <.0	<5,0 <10 <5,0 <10 <5,0	4,80 4,0 410 4,0 4,0 40,50	<5,0 <10 <5,0 <10 <5,0	<8,80 <5,0 <10 <5,0 <1,0 <0,50	43,00 43,0 41,0 43,0 43,0 40,50	43,80 45,0 410 45,0 41,0 40,50	43,80 43,0 41,0 43,0 41,0 40,50
dieldrina endrina	0.02 1.40 0.05 0.09 0.04 0.04	<0,010 <0,010 <0,000 <0,010 <0,010 <0,000 <0,000	<0,010 <0,020 <0,020 <0,010 <0,020 <0,020	40,010 40,010 40,020 40,010 40,010 40,020	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,0100	<0,030 <0,030 <0,030 <0,030 <0,030 <0,030 <0,030	<0,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,020 <0,010 <0,010 <0,020 <0,020	<0,010 <0,010 <0,020 <0,020 <0,020 <0,020 <0,020	<0,010 <0,010 <0,020 <0,010 <0,010 <0,010 <0,020	<0,010 <0,010 <0,020 <0,010 <0,010 <0,020 <0,020	<0,010 <0,010 <0,020 <0,010 <0,010 <0,010 <0,000	40,010 40,010 40,010 40,010 40,010 40,000	<0,010 <0,010 <0,020 <0,020 <0,010 <0,010 <0,010	<0,010 <0,010 <0,020 <0,010 <0,010 <0,010 <0,010	40,000 40,000 40,000 40,000 40,000 40,000 40,000	<0,010 <0,010 <0,020 <0,010 <0,010 <0,020 <0,020	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,020 <0,010 <0,010 <0,020 <0,030	<0,010 <0,010 <0,020 <0,010 <0,010 <0,020 <0,020	40,010 40,010 40,020 40,010 40,010 40,010 40,000	<0,030 <0,030 <0,030 <0,030 <0,030 <0,030 <0,030	<0,010 <0,010 <0,020 <0,020 <0,020 <0,020 <0,010	40,000 40,000 40,000 40,000 40,000 40,000 40,000
	1.00 1.00 1.00 0.03 0.21 Unitarity ext/on %	<5.0 <0,050 <0,010 <0,010 0.066 96.2	<0,010 <0,050 <0,010 <0,010 <0,010 0.099	<5,0 <0,000 <0,000 <0,010 <0,010 0,010	<0,010 <0,050 <0,050 <0,010 <0,010 0.063	<0,000 <0,000 <0,000 <0,000 <0,000 0,000	45,0 45,0 40,050 40,000 40,000	<0,010 <5,0 <0,050 <0,010 <0,010 0,038 90.6	<0,010 <5,0 <0,050 <0,010 <0,010 0,050 94.6	<0,010 <5,0 <0,050 <0,010 <0,010 0,050 94,4	<0,010 <0,020 <0,010 <0,010 <0,010 94.2	<0,010 <0,050 <0,010 <0,010 0,054 94.7	<0,010 <0,000 <0,010 <0,010 0,005 98.0	<0,010 <0,020 <0,020 <0,010 <0,010 0,048	<0,010 <5,0 <0,050 <0,010 <0,010 0,010 0,040 95,4	45,0 43,000 43,000 43,000 43,000 50,000	<0,010 <5,0 <0,050 <0,010 <0,010 0,035	<0,010 <5,0 <0,050 <0,010 <0,010 0,010 96,7	<0,000 <0,000 <0,000 <0,000 <0,000 0,000	<0,010 <5,0 <0,050 <0,010 <0,010	<5,0 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000	<0,030 <0,050 <0,050 <0,030 <0,030 0,035	<0,010 <5,0 <0,050 <0,010 <0,010 0,014	<
emberna seca Fransilometria (z/5 um) VEI - Valor amestrado VEI - Valor amestrado VEI - Valor do estado inicial VYOR - Valor do estado inicial VYOR - Valor do referenda VYOR - Valor do referenda	75	96,2 6.2 96.8	E2 92.2	6.E 92.7	5.4 93.5	5.7 95.4	6.D 96.E	5.9 97.2	6.5 94.4	6.1 98.6	35 98.6	3.6 93.6	4.E 95.4	6.3 93.9	3.5 93.6	49 959	3.8 97.1	4.5 96.5	5.0 95.5	51 97.2	5.6 96.5	4.E 97.A	55 962	5.1 97.5
VPN - Valor de fundo natural VPR - Valor de fundo natural VPR - Valor de referência VR - Valor de referência Notas de preexchimento: Preexchim, conforme aplicável, a coluna referente a Tener tantos cobrana quantas as amostras de solo Elerinar lishas correspondentes aos contaminarios	os VR, VDR, VEI ou VFN, e elimi ecoliidas, organizadas por por rilio analizados e inserir linhas	nar as restantes. Into de amostragem e por i para contaminantes anal	data de amostragem.	a matriz.																				
" Fonte (indicar a fonte (incluindo, p.e., a tabela se	lecionada, o uso do solo, a sua VA VA VA	testura e a utilização, ou	nilo, de água subterrânea,	se aplicáveis)):																				

HVO - GALP Sines

Relatório Avaliação Solos e Águas Subterrâneas

R2201038 - Relatório Avaliação dos solos e águas subterâneas Dezembro 2022

Elaborado por: Carlos Miranda (Responsável Técnico LQA -ambiente ld^a)

INDÍCE

1- Nota Introdutória e Enquadramento do Relatório Preliminar	3
2- Identificação da Instalação	4
3- Enquadramento Ambiental	7
3.1- Topografia	7
3.2- Geologia e Hidrogeologia	7
3.3- Recarga e Balanço Hídrico local	8
3.4- Hidrologia	ç
3.5- Vias Construídas e Utilização de Terrenos Circundantes	10
4- Caracterização e investigação do Local de implantação da Instalação	11
4.1 Solos e enquadramento geológico	11
4.1.1- Malha de Amostragem solos superficiais (1,5 m profundidade)	11
4.1.2- Medições in situ - Voc´s	13
4.1.3- Sondagens geológicas e geotécnicas - Logs Geológicos	16
4.2- Águas subterrâneas	23
4.2.1 - Enquadramento hidrogeológico	23
4.2.2 - Piezómetros adicionais	34
4.2.3 - Piezómetros - Técnica de instalação	35
4.3 - Purga e Amostragem de Águas subterrâneas	36
6- Conclusões e Recomendações	41

1- Nota Introdutória e Enquadramento do Relatório Preliminar

Por forma a caracterizar a geologia e hidrogeologia de pormenor foi realizada uma campanha de pormenor com recolha de amostras de solos; águas subterrâneas e instalação de piezómetros para monitorização dos níveis freáticos e determinação da qualidade química do aquífero. O estudo incluiu, em termos genéricos:

- Realização de 40 Sondagens Geológicas dentro da instalação. Os pontos encontramse distribuídos em função da localização de cada uma das unidades fabris e de armazenamento;
- Determinação *in situ* de eventuais indícios de contaminação com recurso a equipamento de medição de compostos voláteis;
- Caracterização analítica das amostras de solos e águas subterrâneas; De notar que são incluídos parâmetros enquadrados no plano de gestão da Bacia hidrográfica Local e do plano de monitorização da Zona Industrial e Logística de Sines (ZILS).
- Instalação de piezómetros para posterior monitorização dos níveis aquíferos, a serem utilizados em futuros programas de monitorização;

As análises foram realizadas por laboratório acreditado para todos os parâmetros propostos.

A rede de amostragem, as técnicas analíticas e equipamentos a utilizar no estudo geológico/ hidrogeológico de pormenor são descritos no capítulo 4.

✔ Compilação da Informação; Análises de Risco e Relatório Base

Para além da apresentação dos resultados analíticos, a que respeita o presente documento, a interpretação e o estudo de pormenor será realizado posteriormente com recurso a software da especialidade, em particular:

- Software Visual Modflow: Modelação das águas subterrâneas; determinação de direcção preferencial do fluxo de água subterrânea e susceptibilidade à contaminação. Apresentação de eventuais plumas de contaminação de águas subterrâneas e respectivos volumes;
- Software Análise de Risco RBCA: Face aos resultados obtidos na investigação do subsolo; a eventual presença de contaminação; O tipo de produtos manipulados e os tempos de residência dos trabalhadores da GALP HVO serão definidos cenários de risco e calculados os respectivos valores limites / por parâmetro.

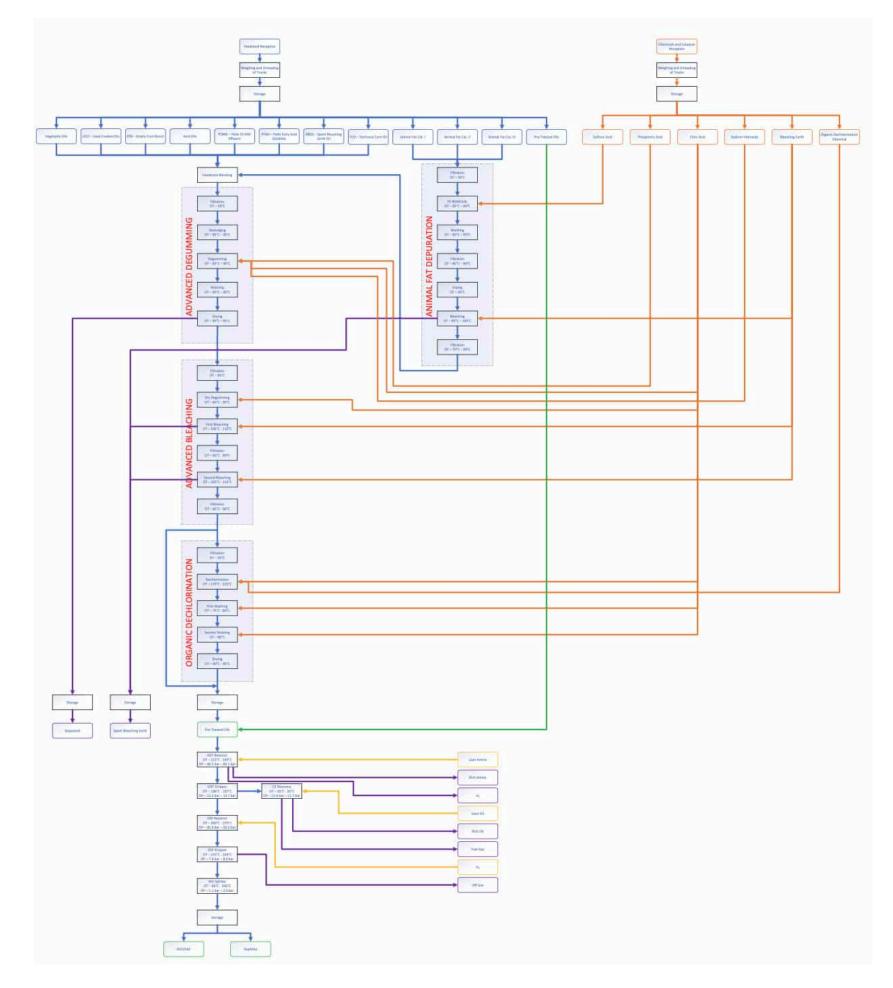
2- Identificação da Instalação

A nova unidade HVO, pertença da GALP Energia, situar-se-á na freguesia de Sines, concelho de Sines, e pertence ao agrupamento logístico designado por Zona Industrial e Logística de Sines (ZILS).

A unidade industrial situar-se-á a, aproximadamente, 4 km a Este da cidade de Sines. A zona envolvente da HVO possui actividade industrial com dimensões consideráveis, como são o caso da própria refinaria da Refinaria da GALP e a petroquímica da Repsol, situada a Norte. Os centros Industriais, incluindo a HVO, são envolvidos por actividades relacionadas com o desenvolvimento industrial e agrícola.

O esquema seguinte ilustra o enquadramento sócio-geográfico da nova unidade industrial HVO.

Figura 01: Enquadramento Geográfico da nova unidade HVO - Sines



A unidade industrial será instalada na zona logística de Sines. O produto final é o HVO / SAF e Nafta

De uma forma genérica a figura seguinte (figura 2) resume os produtos e os processos e o balanço de massas associados à actividade desta unidade industrial.

3- Enquadramento Ambiental

3.1- Topografia

Do ponto de vista morfológico a região é uniformemente aplanada, independentemente dos trabalhos de escavação e aterro, e construções de obras de arte, a que foi sujeita toda a zona industrial ao longo das últimas décadas.

3.2- Geologia e Hidrogeologia

A GALP- HVO encontra-se implantada numa área abrangida pela folha número 42-C de Santiago do Cacém, Carta Geológica de Portugal escala 1:50 000.

Do ponto de vista geológico e hidrogeológico a área pode ser assim subdividia:

- Níveis mais superficiais: Litologia mais recente, com uma espessura que pode atingir em alguns locais os 50 metros. Este sistema, que também é aquífero, é essencialmente constituído por bicalcarenitos e arenitos finos miocénicos e areias com seixos de planície litoral plioplistocénica;
- Níveis profundos: Constituído por formações carbonatadas Jurássicas, com espessuras superiores a 300 metros, estando em grande parte isolado do aquífero superior.
- Na zona Oeste, surgem ainda Gabros e Sienitos de baixa permeabilidade. Os Gabros apresentam-se como rochas cinzento-escuras, holocristalinas e de granulosidade média a grosseira por vezes porfiróide, de cor cinzento-clara quando frescas e rosadas após alteração.

Tendo em conta a conceptualização definida em trabalhos da especialidade, estimase que existe uma área com cerca de 95 km2, na qual a recarga contribui para a alimentação do aquífero profundo, cujo escoamento anual médio é da ordem dos 12×106 m3/ano. Adicionalmente, considera-se que a recarga ocorrida na restante área do sistema aquífero (cerca de 155 km2) é cerca de 20×106 m3/ano, escoando esta água no aquífero superior, cujo padrão regional de fluxo é controlado através da conexão hidráulica que se estabelece com a rede hidrográfica. A implementação de modelos regionais de escoamento para o sistema aquífero de Sines (Delgado, 2003; Chambel Pedro & Monteiro, 2007) permite a interpretação coerente dos dados disponíveis para este sistema aquífero à escala regional, tanto para o aquífero superior como para o inferior.

Relativamente ao sector SW do sistema aquífero, verifica-se que nesta área os dois reservatórios, superior e inferior, deixam de estar separados por uma camada confinante.

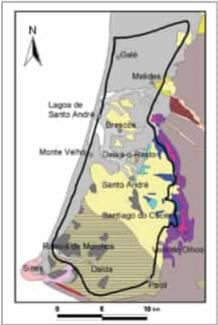


Figura 03: Litologias que integram o sistema aquífero de Sines e área circundante, de acordo com Almeida et al. (2000). No canto superior direito representa-se o alinhamento que separa a área de ocorrência de artezianismo repuxante (A), que coincide parcialmente com uma falha regional no interior do aquífero. Na área B os aquíferos superior e inferior estão em conexão hidráulica.

O enquadramento geológico regional da área onde está implantada a GALP HVO é igualmente dado pela sua localização sobre a carta geológica de Portugal de escala 1:200 000 (Oliveira, 2004).

3.3- Recarga e Balanço Hídrico local

De entre os valores de recarga anual média propostos para o sistema aquífero de Sines, a estimativa mais elevada apresentada foi proposta por Moinante et al.,1994 (in Almeida et al., 2000), correspondendo a 224 mm anuais que, tendo em conta que a área considerada para o sistema aquífero de Sines é de 250 km2, equivale a um escoamento anual médio de 56 hm3/ano. Por seu lado, Henriques & Rodrigues (1987) consideraram 4 l/s.km2 como valor de recarga média no sistema, equivalente a 31.5×106 m3/ano o que, tendo em conta mais uma vez a área do sistema aquífero, corresponde a apenas 126 mm de infiltração. Salienta-se que ambas as estimativas apresentadas pelos autores referidos correspondem a estimativas globais de escoamento para o sistema aquífero de Sines, não havendo referência a separação dos balanços dos sistemas aquíferos superior e inferior.

3.4- Hidrologia

A configuração da rede hidrográfica na área do sistema aquífero de Sines e zonas húmidas associadas, juntamente com a análise da distribuição dos potenciais hidráulicos nas formações superficiais presentes nesta área, sugerem fortemente a existência de um padrão de escoamento superficial fortemente condicionado pelas condições hidrogeológicas. Verifica-se que, junto ao limite Oeste do sistema aquífero de Sines existe um conjunto de relevos que se alinham no sentido aproximado N-S, conduzindo à separação E-W da rede hidrográfica.

As linhas de água mais importantes que seguem para ocidente estão identificadas na Figura 05. A existência de áreas onde a superfície freática está junto à superfície topográfica, leva à formação de zonas alagadas nas ribeiras de Melides, Cascalheira e Badoca, sugerindo que se trata de ribeiras efluentes. A presença de cordões litorais impede que estas ribeiras desagúem directamente para o acesso ao mar, contribuindo assim para a existência da lagoa de Melides, no caso da ribeira de Melides, e lagoa de Santo André, no caso das ribeiras da Cascalheira e da Badoca. Esta situação verifica-se igualmente para a ribeira que dá origem à lagoa da Sancha. As Ribeiras de Moinhos e das Fontainhas desenvolvem-se a altitudes mais elevadas, junto aos limites Sul e Norte do sistema aquífero e não apresentam evidências tão acentuadas como as restantes de apresentarem comportamento generalizadamente efluente, relativamente ao aquífero superior.

Figura 04: Rede hidrográfica na área do sistema aquífero de Sines.

Relativamente ao seu suporte litológico, o aquífero superior é constituído por litologias miocénicas e plioplistocénicas. O Miocénico está representado pelos níveis marinhos do litoral, formados por biocalcarenitos e arenitos finos, esbranquiçados. Esta

unidade assenta directamente sobre os depósitos do Jurássico. No topo, a sequência litológica que suporta este aquífero detrítico, termina com as formações do Plioplistocénico denominadas de Areias com seixos da planície litoral. São constituídos por areias com pequenos seixos de quartzo, lascas de xisto e fragmentos de arenitos do Triásico. A cor destas formações é, de um modo geral, alaranjada e avermelhada (Zbyszewski & J. Pais in Inverno et al., 1993).

3.5- Vias Construídas e Utilização de Terrenos Circundantes


A figura seguinte (figura 5) ilustra o enquadramento regional da nova unidade GALP HVO, em Sines, em particular da posição da unidade relativamente às principais vias de comunicação, nomeadamente:

- A Oeste da GALP HVO;
- A Norte da GALP HVO;

Para além das 2 vias de comunicação principais foi construída uma via de comunicação na ZILS que permite o acesso portaria Sul da Refinaria de Sines, local da futura unidade HVO.

Na zona envolvente à GALP HVO a actividade industrial é significativa, tendo como principal referência a própria refinaria da GALP, a Repsol e a central da EDP, a Sul, entretanto encerrada. A Oeste da unidade HVO encontra-se a Cidade de Sines e toda a área tem uma forte implementação da actividade agrícola e florestal.

Figura 05: Rede rodoviária na zona envolvente da unidade industrial HVO.

4- Caracterização e investigação do Local de implantação da Instalação

Como referido anteriormente, o presente relatório de progresso apresenta as principais actividades que a GALP HVO para reunir informação pertinente para o reconhecimento do estado de referência do meio subterrâneo, nomeadamente solos e águas subterrâneas.

Para o efeito, de seguida, apresentam-se os trabalhos de índole geológica e hidrogeológica que se consideram necessários para uma caracterização do estado de referência dos solos e águas subterrâneas, divididos pelos respectivos capítulos.

4.1.- Solos e enquadramento geológico

4.1.1- Malha de Amostragem solos superficiais (1,5 m profundidade)

No dimensionamento da malha de amostragem foram tidos em consideração os guias técnicos da APA, que são claros quanto aos parâmetros a avaliar e respectivos valores de referência. Em complemento, o número de pontos de amostragem foram calculados em acordo com documentos técnicos estabelecidos por organismos de regulação, tais como os guias EPA e as normas de amostragem ISO.

Assim, considerou-se pertinente optarmos por uma amostragem sistemática em grelha regular. Significa isto que a área foi dividida em quadrículas iguais e no centro de cada quadrícula foi recolhida uma amostra de solo. Isto porque não existem estruturas potenciais contaminantes antigas, as áreas de investigação apresentam uma geometria linear (rectângulos) e ainda não foram realizadas quaisquer análises de solos.

Em acordo com o Guia EPA para recolha de amostras de solos deve ser aplicada a fórmula $n=A/G^2$ ($n=n^o$ de amostras ; A= em metros quadrados; G= distância entre as linhas da grelha de amostragem) para determinar o número de amostras a recolher em cada uma das áreas de investigação. Assim, no caso do HVO, sendo uma área superior a 20 000 m2 a distância entre as linhas da grelha deve ser de 18 m a 20 m, no total, 185 amostras representativas.

Contudo, sendo uma primeira abordagem ao estado de referência do local é admissível que a malha seja alargada ao dobro, no que resulta centros de amostragem de uma malha de 40 m X 40 m, reduzindo o número de pontos, a aproximadamente 40 amostras de solo.

A figura seguinte (Figura 6) ilustra a posição relativa de cada um dos pontos de amostragem de solos que foram sujeitos a reconhecimento geológico local.

Relatório Base - Fase 2: Apresentação Resultados Analíticos - R2201038 GALP HVO- Sines Página 12 de 42

4.1.2- Medições in situ - Voc's

Em cada estrutura de sondagem disponibilizada foram medidos os Compostos Orgânicos Fotoionizáveis e os Compostos Orgânicos Ionizáveis por Chama presentes em fase gasosa nas amostras de solos (após equilíbrio, "em headspace")¹, bem como na fase gasosa livre. Com efeito, e apesar da sua utilização generalizada neste tipo de estudos, a técnica de Detecção por Foto-Ionização de Compostos Orgânicos em headspace apresenta diversas limitações² que poderão ser minimizadas ou, mesmo, ultrapassadas pela Detecção por Ionização por Chama.

A técnica de detecção permitiu minimizar as interferências analíticas devidas à possível presença de metano de ocorrência natural.

Para o efeito, foi utilizado Analisador FID de Carbono Orgânico: Signal Instruments VOC analyzer 3030 PM, nº de série 16330, com sonda aquecida de anti-condensação, e linha de calibração in situ (conforme exigência Método U.S.EPA 25A).

Assim, em cada uma das amostras recolhidas foi determinada a eventual presença de voláteis.

Figura 07: Registo Fotográfico do programa de monitorização de voláteis com recurso a FID.

A tabela seguinte (tabela 1) reúne o resultados obtidos na monitorização dos compostos orgânicos voláteis com recurso a FID.

As amostras de solos foram recolhidas de forma genérica a 1,5 metros de profundidade.

 $^{^{1}}$ U.S.EPA. Method 3815, Screening Solid Samples for Volatile Organics.

² Entre essas limitações, destacamos:

<sup>susceptibilidade de interferência pela condensação de vapor de água nas paredes da célula do detector.
baixa ou nula sensibilidade a diversos compostos orgânicos, como, por exemplo, alguns alifáticos.
grande variabilidade do factor de resposta à concentração de Carbono Orgânico, em função da grande amplitude de energias de fotoionização das diferentes moléculas orgânicas, por oposição à quase linearidade da resposta à ionização por chama.</sup>

Tabela 1: Resultados da concentração de interface decorrente das medicões com FID - HVO GALP

Referência do ponto de Amostragem	Amostras Recolhidas	Referência Amostra solo	Data Amostragem	Concentração total voláteis (ppm _v)
S1	_	HVOSolo1	_	_
S2	_	HVOSolo2	_	_
S3	S	HVOSolo3	28/09/22	0,50
S4	S	HVOSolo4	28/09/22	0,00
S 5	_	HVOSolo5	_	_
S6	_	HVOSolo6	_	_
S7	2	HVOSolo7	28/09/22	0,00
S8	₩	HVOSolo8	28/09/22	0,00
S9	_	HVOSolo9	_	_
S10	_	HVOSolo10	_	_
S11	2	HVOSolo11	28/09/22	0,00
S12	₩	HVOSolo12	28/09/22	0,00
S13	_	HVOSolo13	_	_
S14	_	HVOSolo14	_	_
S15	₩	HVOSolo15	28/09/22	0,00
S16	₩	HVOSolo16	28/09/22	0,00
S17	_	HVOSolo17	_	_
S18	_	HVOSolo18	_	_
S19	2	HVOSolo19	28/09/22	0,00
S20	₩	HVOSolo20	28/09/22	0,00
S21	_	HVOSolo21	_	_
S22	_	HVOSolo22	_	_
S23	₩	HVOSolo23	28/09/22	0,00
S24	2	HVOSolo24	28/09/22	0,80
S25	_	HVOSolo25	_	_
S26	_	HVOSolo26	_	_
S27	₩	HVOSolo27	28/09/22	0,00
S28	S	HVOSolo28	28/09/22	0,00
S29	_	HVOSolo29	_	_
S30	_	HVOSolo30	_	_
S31	2	HVOSolo31	28/09/22	0,00
S32	₩	HVOSolo32	28/09/22	0,00

Referência do ponto de Amostragem	Amostras Recolhidas	Referência Amostra solo	Data Amostragem	Concentração total voláteis (ppm _v)
S33	_	HVOSolo33	_	_
S34	_	HVOSolo34	_	_
S35	₩.	HVOSolo35	28/09/22	0,00
S36	₩	HVOSolo36	28/09/22	0,00
S37	_	HVOSolo37	_	_
S38	_	HVOSolo38	_	_
S39	₩	HVOSolo39	28/09/22	0,00
\$40		HVOSolo40	28/09/22	0,00
S41		HVOSoloRef1	28/09/22	0,00
S42	₩	HVOSoloRef2	28/09/22	0,00
S43	₩	HVOSoloRef3	28/09/22	0,00

^{*} Profundidade da amostragem relativamente superfície do terreno

Os resultados obtidos nas medições de compostos orgânicos voláteis por recurso a FID não identificaram qualquer indício de afectação dos solos na zona de instalação do HVO.

As amostras de solo recolhidas foram devidamente condicionadas e enviadas para avaliação laboratorial dos principais parâmetros estabelecidos no guia técnico da APA - Solos Contaminados - Valores de referência para o solo - Revisão 3 - Setembro de 2022.

Os resultados encontram-se compilados no **ANEXO 1**, em folha tipo Excel, referência da APA, assim como os respectivos boletins analíticos.

Os resultados são comparados com os valores de referência considerados na Tabela D, c/ utilização de água subterrânea, uso industrial/comercial, solo superficial. De salientar que alguns resultados analíticos não alteraram a escolha da tabela de referência e respectivas colunas, nomeadamente o pH e a geometria granulométrica das amostras.

As amostras no interior da refinaria não foram ainda recolhidas por questões de logística/segurança. A respectiva recolha está preconizada para as próximas semanas (Janeiro 2022).

4.1.3- Sondagens geológicas e geotécnicas - Logs Geológicos

Adicionalmente aos trabalhos de avaliação de solos suprareferidos, foram realizadas 10 sondagens geognósticas e geotécnicas na zona da unidade HVO .

As sondagens foram realizadas com recurso a Máquinas de perfuração da especialidade³, nomeadamente:

- AVS Drill 805 drilling rig;

Figura 08: Registo Fotográfico da máquina sondagens in situ - HVO.

A tabela seguinte (tabela 2) reúne as localizações absolutas das 10 sondagens realizadas no local, assim como as principais características estruturais.

A figura 10 ilustra a posição relativa das sondagens com os principais elementos processuais da nova unidade HVO.

Tabela 2: Características estruturais e localização das sondagens realizadas

Sondagem	Profundidade máxima	Piezómetro	Localização					
Identificação	(m)	(ml)	М	P	z			
BH1	19,9	19,5	-59119.897	-190362.300	41.543			
BH2	19,88	_	-59064.028	-190383.025	41.830			

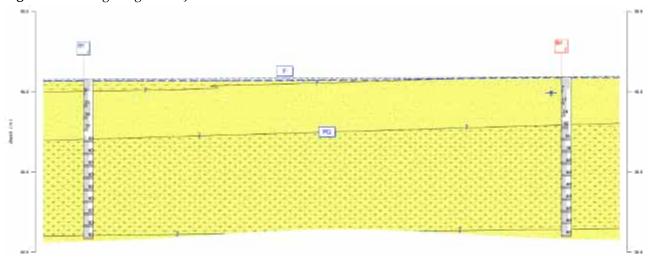
-

³ Informação retirada - Green H2 Project ; Sines - Portugal : Site investigation Works - Preliminary Geotechnical Report (Proc.24222 - July 2022 - Geocontrol

Sondagem	Profundidade máxima	Piezómetro	Localização					
Identificação	(m)	(ml)	М	Р	z			
BH3	19,82	19,5	-58977.047	-190375.927	42.172			
BH4	19,85	19,5	-59087.952	-190439.432	40.772			
BH5	19,89	_	-58920.384	-190457.681	42.092			
BH6	19,83	19,5	-58971.574	-190529.410	42.175			
BH7	19,77	_	-58857.535	-190098.704	42.490			
BH8	19,88	_	-58819.551	-190094.385	42.560			
ВН9	19,92	19,5	-58816.301	-190138.965	42.520			
BH10	19,90	_	-58838.479	-190160.177	42.590			

Figura 09: Sondagens geognósticas realizadas na zona da nova unidade HVO - GALP, Sines.

As sondagens desenvolveram-se até aos, aproximadamente, 20 metros de profundidade, tendo-se instalado estruturas piezométricas no BH6 e no BH 10, com 19 metros de profundidade total.


No ANEXO 2 encontram-se reunidos os logs das 10 sondagens realizadas.

As figuras seguintes ilustram os perfis litoestratigráficos interpretativos da geologia descrita nos *logs* de sondagens.

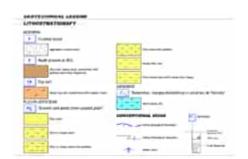
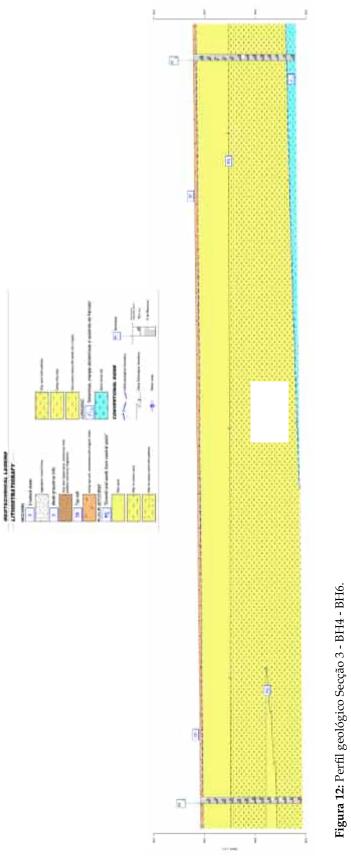
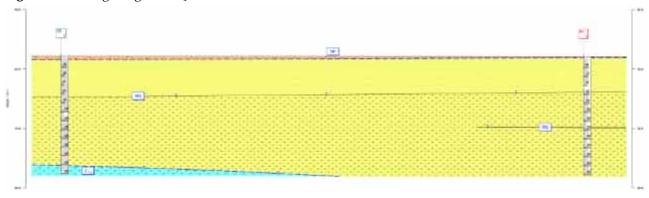
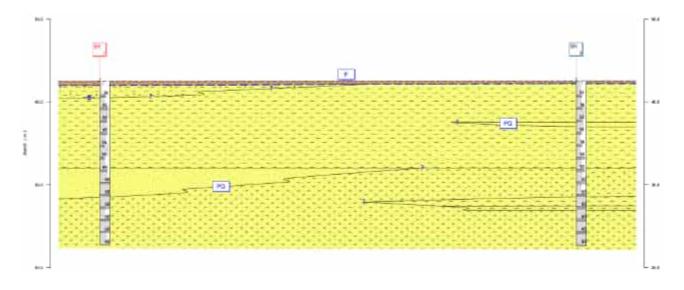


Figura 10: Perfil geológico Secção 1 - BH1 - BH2.


Figura 11: Perfil geológico Secção 2 - BH3 - BH5.



Relatório Base - Fase 2: Apresentação Resultados Analíticos - R2201038 GALP HVO- Sines Página 20 de 42



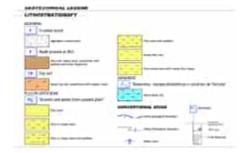


Figura 13: Perfil geológico Secção 4 - BH6 - BH5.

Figura 14: Perfil geológico Secção 5 - BH7 - BH9.

Os trabalhos de investigação geológicos vieram confirmar a expectável geologia/hidrogeologia local, constituída, essencialmente, por depósitos detríticos com níveis siltoargilosos com espessuras variáveis.

De realçar que como em outras zonas do parque industrial a presença de níveis argilosos significativos funcionam como uma barreira natural contra uma eventual propagação vertical da contaminação, protegendo o aquífero carbonatado mais profundo.

4.2- Águas subterrâneas

4.2.1 - Enquadramento hidrogeológico

Todas as estruturas piezométricas inseridas no programa de monitorização hidrogeológico da Refinaria de Sines - Galp são visitadas e desenvolvidos trabalhos de purga e amostragem de água subterrânea, incluindo os furos de captação de água subterrânea e os piezómetros mais profundos. O **ANEXO 3** ilustra a posição absoluta e relativa dos piezómetros instalados na Refinaria de Sines.

Na campanha de monitorização mais recente, representativa do 2ª semestre de 2021, estão incluídos 83 pontos de monitorização. Desses, 68 piezómetros estão elegíveis para caracterização analítica, isto porque os restantes 15 pontos de amostragens (periodicidade anual) foram amostrados no 1º Semestre de 2021. No total foram efectivamente recolhidas e analisadas 51 amostras em pontos preconizados para o efeito, cujos boletins se encontram reunidos no **ANEXO 4**. Excluídos ficaram os pontos⁴:

- -Furo 1 Inacessível Amostragem;
- -MW-7; MW-36; MW-40; MW-41; MW-44; MW-46; PZ-36: Inacessíveis;
- -MW-22: Seco;
- -MW-45; PZ-36; PZ-52, PZ-66, PZ-70; : Destruídos;
- -PZ-44; PZ-45; e PZ-72: Obstruções no interior dos piezómetros;

Os procedimentos empregues in situ e on site decorreram em acordo com os guias de amostragem de água subterrânea EPA 542-S-02-001 2002 - Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers.

O controlo de amostragem foi dimensionado com base no número de pontos de amostragem, número de equipas de trabalho, geometria e disposição das potenciais fontes de contaminação da Refinaria e histórico analítico das campanhas de amostragem precedentes.

Os resultados dos brancos de transporte, de laboratório e brancos de campo revelaram-se conformes com os valores padrão e com os resultados obtidos nas amostras duplicadas.

⁴ Toda a rede piezométrica da Refinaria de Sines está, presentemente, a ser recuperada e optimizada, em particular as caixas de protecção superficiais e instalação de novos piezómetros em substituição dos entretanto destruídos ou desaparecidos.

Face aos resultados do controlo de amostragem, todas as amostras recolhidas foram consideradas válidas e representativas do estado das águas subterrâneas na altura da campanha de amostragem (Novembro 2021).

Na generalidade dos piezómetros, durante a fase de purga, a estabilização dos parâmetros que validam a representatividade das amostras foi rápida, o que prova a adequação dos equipamentos e procedimentos utilizados na presente campanha de amostragem de águas subterrâneas. No quadro seguinte apresenta-se a média dos valores absolutos.

Tabela 3 – Resultados dos parâmetros de monitorização in situ após o programa de purga e estabilização dos níveis. Os valores apresentados respeitam média aritmética de todas as medições finais realizadas em cada um dos pontos de monitorização.

Oxigénio Dissolvido (mg/l)	Temperatura (°C)	Conductividade eléctrica (µS/cm)	рН	Potencial de Oxidação Redução (mV)	Turvação (FNU)	
3,30	20,94	887	6,25	106,30	filtradas	

Relativamente ao gradiente hidráulico das águas subterrâneas, verificou-se, tal como expectável, uma subida da superfície piezométrica, em reflexo dos meses de Inverno, Na zona de Fabricação e na área a NE da Refinaria, os níveis freáticos são mais elevados que no semestre anterior.

Nos termos referidos, de forma pontual ou difusa, foram detectadas algumas variações significativas nas concentrações de determinados compostos, cuja evolução terá de ser reavaliada em acções subsequentes, sendo de destacar as seguintes:

MtBE5:

Na zona de armazenamento de produtos de registar a afectação por MtBE nos pontos:

*MW-12 (29,5 μ g/l); MW-13 (1,15 μ g/l); MW-15 (97,6 μ g/l); MW-20 (1,47 μ g/l) PZ-46 (754 μ g/l); PZ-47 (0,80 μ g/L); PZ-50 (34,1 μ g/l); PZ-54 (3,53 μ g/l); PZ-58 (90,6 μ g/l);

⁵ Na falta de valores guia de referência, nomeadamente europeus, e a título indicativo, apresentamos alguns valores disponíveis na bibliografia da especialidade:

Os níveis-guia para toxicidade aguda e toxicidade crónica do MtBE em águas doces, de acordo com alguns estudos desenvolvidos, situar-se-ão respectivamente em 150 mg/l e 50 mg/l - Environmental Science and Technology (2002, Volume 36, pages 125-129) num artigo intitulado: "MtBE Ambient Water Quality Criteria Development: A Public/Private Partnership".

Na falta de valores guia de referência baseados em estudos de efeitos toxicológicos no ser humano, as recomendações expressas pela EPA referem que as concentrações de MtBE nos recursos hídricos com utilização potencial para consumo humano ou similar deverão ser mantidas entre 20 a 40 µg/L, eventualmente inferiores, garantindo assim uma margem grande de exposição a eventuais efeitos tóxicos- United States Office of Water EPA-822-F-97-009, Environmental Protection Agency 4304, Dec/1997 -Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether (MtBE)

Na zona Fabril (Fábrica 1 e Fábrica 2) e ETAR de registar os resultados obtidos nos seguintes pontos:

* MW-42 (0,78 μ g/1); PZ-61 (3,37 μ g/1); PZ-67 (105 μ g/1); PZ-68 (0,68 μ g/1); PZ-71 (24,0 μ g/1);

No piezómetro MW-38, junto ao edifício administrativo, foi detectada uma concentração de 4,88 μ g/l e no MW-39, junto às oficinas, a concentração de MtBE detectada foi de 9,18 μ g/l.

Nos furos de captação verticais e nos piezómetros envolventes foi detectada afectação no Furo 3 (2,74 μ g/l); PZ-S1 (2,91 μ g/l); PZ-S2 (1,11 μ g/l) e PZ-S4 (5,25 μ g/l).

BTEX:

A afectação por BTEX encontra-se principalmente em duas zonas da Refinaria, nomeadamente na Fábrica 2 (pelo histórico), identificada principalmente no MW-46 e na Zona de armazenamento de produtos intermédios e acabados, identificada no MW-15 e PZ-46. Nesta campanha o MW-46 não se encontrava acessível.

Na presente campanha de amostragem, o PZ-46 é o ponto de monitorização que apresenta maior concentração de BTEX (soma = 6290 μ g/l). A fracção mais representativa é a dos Xilenos, com uma concentração de 3190 μ g/l.

No caso do MW-15, a maior concentração de BTEX é conferida pela fracção de Benzeno (215 μ g/1).

Com menor expressão que os pontos suprareferidos, devem, no entanto, ser salientados as seguintes concentrações de BTEX:

- Benzeno: PZ-71 (1,12 μ g/1); PZ-61 (45,9 μ g/1);
- Etilbenzeno: PZ-61 (5,98 μ g/1);
- Xilenos: PZ-61 (14,4 μ g/1);

TPH:

Todo o espectro amostral, incluindo as amostras recolhidas nos furos de captação de água subterrânea, foi sujeito a uma caracterização analítica de TPH, salientando-se, pela projecção hidrogeológica e valores absolutos, os seguintes resultados:

Nos piezómetros MW-15 e PZ-46, com histórico de afectação por TPH, não apresentavam bancada de produto livre sobrenadante visível e identificável pela sonda de densidades.

Em alguns pontos foram detectadas cadeias de hidrocarbonetos, cujos resultados $TPH_{C10\text{-}C40}$ podem ser assim resumidos:

- MW-15 (877 μ g/1); MW-20 (1890 μ g/1); PZ-46 (1050 μ g/1);

Metais Pesados:

Comparando com os valores estabelecidos no plano da bacia Hidrográfica local, nomeadamente os limiares estabelecidos nos objectivos ambientais para o alcance do bom estado em 2027, verifica-se que existe afectações de água subterrânea por:

Chumbo total nos piezómetros MW-08; MW-14; MW-16; MW-28; MW-38; PZ-53; PZ-67; PZ-69;

A concentração de Chumbo, quer na componente total quer na componente dissolvida, não ultrapassa o valor estabelecidos pela análise de risco, 17,7 mg/l, valor calculado para o Cenário 4.

Alumínio total: MW-19; MW-28; MW-29; MW-30; MW-31; PZ-53; PZ-64; PZ-68; PZ-71;

Arsénio total: MW-38; MW-39; MW-42; PZ-48; PZ-50;

Ferro total: MW-19; MW-28; MW-29; MW-31; PZ-53; PZ-54; PZ-64; PZ-68; PZ-71; PZ-D3; PZ-D6;

Manganês: MW-28; MW-31; PZ-53; PZ-54; PZ-64; PZ-71; PZ-D6;

Níquel: PZ-67; PZ-69;

Zinco: PZ-53; PZ-54; MW-08; MW-15; MW-16; MW-20; MW-39; PZ-49; PZ-69;

PAHs:

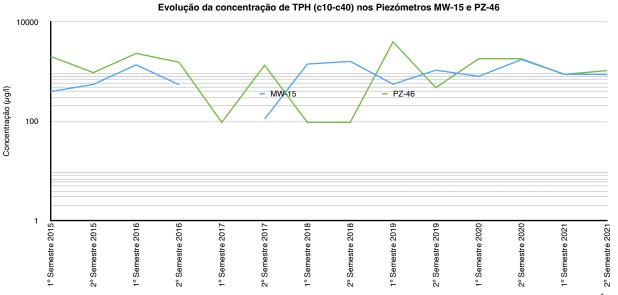
Não foi detectada a presença de Hidrocarbonetos aromáticos polinucleares no grupo de piezómetros seleccionados para a realização deste conjunto de parâmetros.

Pesticidas:

Relativamente aos pesticidas, ultrapassam os limites estabelecidos pelo plano de bacia hidrográfica, os seguintes pontos/ compostos:

- Diurão: PZ-71;

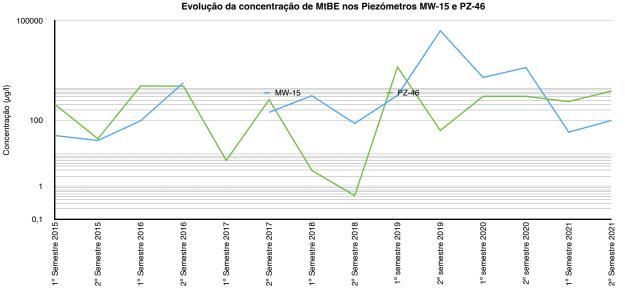
- Desetilterbutilaniza: MW-19; MW-31;


PCBs:

Não foi detectada a presença de PCBs no conjunto dos piezómetros seleccionados para o efeito.

Dos resultados obtidos na presente campanha de amostragem, e pela sua comparação com os resultados obtidos nos últimos anos, podemos concluir que:

→ Persistem os níveis de contaminação em particular as áreas:


*Na zona E3 e na Zona E4 - Área B- Armazenamento de Produtos Intermédios e Acabados: persiste a afectação em particular no piezómetro no PZ-46. As figuras 14, 15 e 16 ilustram a evolução das concentrações de TPH; BTEX e MtBE nos piezómetros MW-15 e PZ-46.

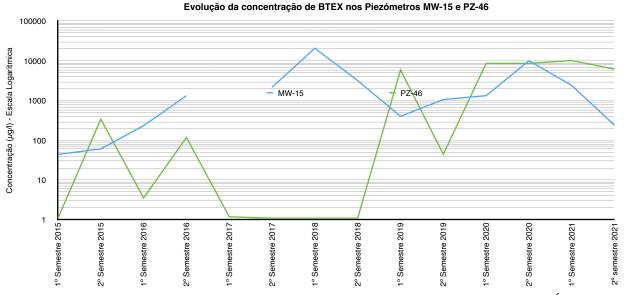

Figura 15 - Evolução da concentração de TPH (C_{10} - C_{40}) nos piezómetros MW-15 e PZ-46, situados na Área B da zona de armazenamento de produtos intermédidos e acabados

Figura 16 - Evolução da concentração de MtBE nos piezómetros MW-15 e PZ-46, situados na Área B da zona de armazenamento de produtos intermédidos e acabados.

Figura 17 - Evolução da concentração de BTEX nos piezómetros MW-15 e PZ-46, situados na Área B da zona de armazenamento de produtos intermédidos e acabados.

Os resultados analíticos foram interpretados com recurso a software da especialidade EasyContour, através do módulo de cálculo inverso da distância, e por forma a importar diretamente para o software Visual Modflow a dispersão das concentrações respeitantes a esta campanha de amostragem.

Assim, as figuras seguintes ilustram os resultados obtidos para os principais compostos que afectam presentemente as águas subterrâneas subjacentes à Refinaria de Sines, nomeadamente:

- Figura 18: projecção das concentrações de TPH_{C10-C40} (μ g/1);
- Figura 19: projecção das concentrações de Benzeno (μ g/1);
- Figura 20: projecção das concentrações de Tolueno (μ g/1);
- Figura 21: projecção das concentrações de Xilenos(μg/l);

Figura 18: Projecção Isoconcentração de TPH C10-C40 subjacente à Refinaria de Sines - GALP - Nov. 2021

Figura 19: Projecção Isoconcentração de Benzeno subjacente à Refinaria de Sines - GALP - Nov. 2021

**Relatório Base - Fase 2: Apresentação Resultados Analíticos - R2201038

**GALP HVO- Sines Página 31 de 42

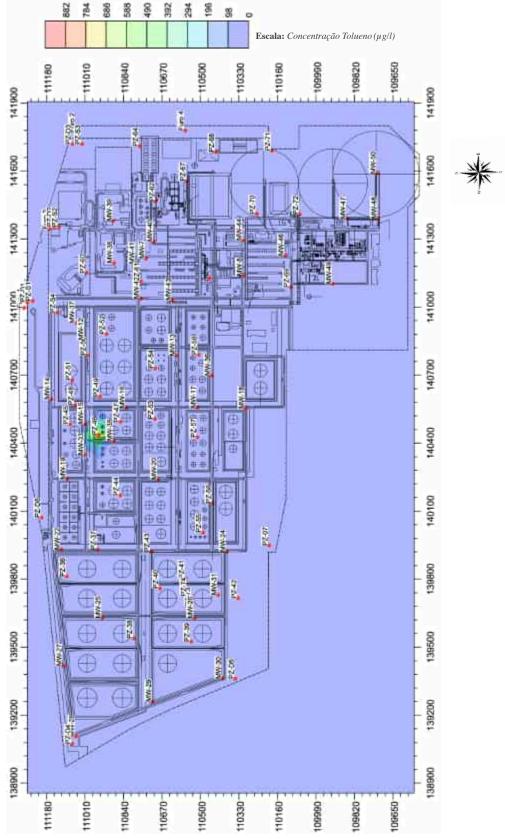


Figura 20 - Projecção Isoconcentração de Tolueno subjacente à Refinaria de Sines - GALP - Nov. 2021

Figura 21 - Projecção Isoconcentração de Xilenos subjacente à Refinaria de Sines - GALP - Nov. 2021

4.2.2 - Piezómetros adicionais

Na área de implantação da nova unidade industrial HVO foram instalados, no total, 5 novos piezómetros com as designações:

PZ-BH1; PZ-BH3; PZ-BH-4; PZ-BH6 e PZ-BH9.

A figura seguinte ilustra a localização dos piezómetros adicionais instalados no local. No **ANEXO 5** encontram-se as características estruturais dos piezómetros instalados.

Figura 22 - Localização dos piezómetros instalados na zona da futura unidade HVO.

4.2.3 - Piezómetros - Técnica de instalação

Os trabalhos de Furação e instalação dos piezómetros podem ser assim resumidos:

- 1- Reconhecimento do local, elaboração da lista de equipamentos e pessoas para aprovação da ficha de segurança de trabalho, parte integrante dos procedimentos de segurança das Unidades Parque;
 - **2-** Mobilização de equipamentos e pessoas, preenchimento das fichas de trabalhos.
- **3-** Escavação manual dos primeiros metros, por forma a identificar estruturas e/ou equipamentos cuja furação poderá provocar danos.
 - 4- Colocação da máquina de furação;
 - 5- Desenvolvimento da furação
- **6-** Durante a furação serão tidos todos os cuidados por forma a evitar a contaminação cruzada de solos, aditivos e água subterrânea.
- 7- Após os trabalhos de furação foram instalados os piezómetros, respeitando as características:
- -Tubagem PVC ou PEAD, com um diâmetro a combinar com o cliente e equipadas com tampas de fundo e topo;
- -As secções ranhuradas são crepinadas na fábrica. Todas as secções são ligadas por roscas;
- O espaço anelar entre a parede da sondagem e a tubagem será preenchido com um filtro de areão bem graduado, até entre 0,5m e 1m acima da secção ranhurada.
- -A seguir ao filtro de areão foi colocado um selo de bentonite com 0,5m de espessura, sendo o restante espaço anelar selado até à superfície com calda de cimento.
- Os piezómetros foram construídos, desenvolvidos e protegidos de forma a permitir a sua utilização em campanhas de amostragem futuras, bem como para ensaios hidráulicos.

Foram usados tubos piezométricos fabricados de acordo com as Normas internacionais: DIN 4925, ASTM F-480 e BS-879-Part. 2 –1988.

8- Na parte superior do areão filtrante foi instalada um maciço de isolamento constituído por cimento e bentonite, por forma a evitar infiltrações directas através do próprio piezómetro.

- **9-** Instalação de uma caixa de protecção superficial. Em acordo com os pressupostos do concurso para as caixas de protecção superficial.
- **10-** Após a instalação dos piezómetros, foi desenvolvida uma limpeza controlada da estrutura com recurso a bombagem num regime de baixo caudal (low-flow).
 - 11- Após a estabilização dos trabalhos foi medido o nível freático.
- **12-** Durante estes trabalhos, foi utilizada uma sonda multi-paramétrica (pH, condutividade eléctrica, redox, temperatura e turvação) por forma a detectar anomalias passíveis de condicionar a funcionalidade do piezómetro.

4.3 - Purga e Amostragem de Águas subterrâneas

Para a purga e amostragem de águas subterrâneas foram utilizadas bombas submersíveis⁶, com caixa de baterias que permite fácil mobilidade entre os pontos de amostragem.

Em apoio aos trabalhos de purga e amostragem foi utilizada uma sonda multiparamétrica AQUAREAD (Aqualogger-2000 com AQUAPROBE AP-2000) -.

Com este equipamento foram medidos os parâmetros in situ:

-Temperatura; Oxigénio Dissolvido ; Potencil RedoX; pH; Condutividade; Turvação;

Todas as técnicas e protocolos de amostragem foram desenvolvidas seguindo as directivas do procedimento técnico operacional⁷.

Relatório Base - Fase 2: Apresentação Resultados Analíticos - R2201038

⁶ pack de captação de águas subterrâneas da marca Eijkelkamp, com especificidades técnicas e estruturais para amostragem de águas culturação que

⁷ Procedimento interno: Procedimento Técnico Operacional Standard: Amostragem de águas subterrâneas, tendo como documento de referência o EPA 542-S-02-001 Ground-Water Sampling Guidelines for Superfund and RCRA Porject Managers.

5 - Caracterizações Analíticas

As amostras de solos e as amostras de águas subterrâneas foram reservadas em frascos adequados à preservação dos parâmetros físicos e químicos que se pretendem mensurar. Os recipientes foram devidamente identificados e enviados para caracterização analítica em laboratório acreditado para o efeito.

Os parâmetros sugeridos tem como objectivo a monitorização dos solos e dos aquíferos face aos produtos e procedimentos associados à produção desenvolvida na unidade industrial HVO mas, também, à integração dos resultados nos limites e valores de qualidade estabelecidos no Plano de Gestão da Bacia Hidrográfica e nos guias e normas estabelecidos pela APA, assim como nos regulamentos estabelecidos pelos principais organismos internacionais, tais como as Normas do Ontário.

A tabela seguinte (Tabela nº 4) reúne os parâmetros que estão a ser avaliados na matriz solos. Os resultados analíticos, tal como referido anteriormente, encontram-se reunidos no **ANEXO 1** (Tabela e boletins das análises solos).

Tabela 4: Lista de Parâmetros contemplados na matriz analítica de solos

	Avaliação da Qualidade do Solo		
Parâmetros	NOTAS ADICIONAIS	Limite de Quantificação	Unidade
Metais e outros elementos químicos			
antimónio		0,5	mg/kg MS
arsénio		0,5	mg/kg MS
bário		0,2	mg/kg MS
berílio		0,01	mg/kg MS
boro solúvel		1	mg/kg MS
cádmio		0,4	mg/kg MS
chumbo		1	mg/kg MS
cobalto		0,2	mg/kg MS
cobre		1	mg/kg MS
crómio (total)		0,5	mg/kg MS
crómio VI		0,06	mg/kg MS
mercúrio		0,01	mg/kg MS
molibdénio		0,4	mg/kg MS
níquel		1	mg/kg MS
prata		0,5	mg/kg MS
selénio		1	mg/kg MS
tálio		0,5	mg/kg MS
urânio		0,1	mg/kg MS
vanádio		0,1	mg/kg MS
zinco		3	mg/kg MS
Compostos aromáticos			
Hidrocarbonetos monoaromáticos			
benzeno		0,005	mg/kg MS
estireno		0,04	mg/kg MS
etilbenzeno		0,02	mg/kg MS

Av	valiação da Qualidade do Solo		
Parâmetros		Limite de	
1 diantetros	NOTAS ADICIONAIS	Quantificação	Unidade
tolueno		0,04	mg/kg MS
kileno (total)		0,03	mg/kg MS
Fenóis			
fenol		0,1	mg/kg MS
Hidrocarbonetos aromáticos policíclicos (PAH)			
acenafteno		0,01	mg/kg MS
acenaftileno		0,01	mg/kg MS
antraceno		0,004	mg/kg MS
benzo[a]antraceno		0,01	mg/kg MS
benzo[d,e,f]criseno (benzo[a]pireno)		0,005	mg/kg MS
benzo[e]acefenantrileno (benzo[b]fluoranteno)		0,01	mg/kg MS
benzo[g,h,i]perileno		0,01	mg/kg MS
benzo[k]fluoranteno		0,01	mg/kg MS
criseno		0,01	mg/kg MS
dibenzo[a,h]antraceno		0,01	mg/kg MS
fenantreno		0,01	mg/kg MS
fluoranteno		0,01	mg/kg MS
fluoreno		0,01	mg/kg MS
indeno[1,2,3-c,d]pireno		0,01	mg/kg MS
1-metilnaftaleno		·	
2-metilnaftaleno	reportados separadamente	0,05	mg/kg MS
naftaleno		0,01	mg/kg MS
pireno		0,01	mg/kg MS
Hidrocarbonetos halogenados			
Hidrocarbonetos halogenados voláteis			
bromodiclorometano		0,020	mg/kg MS
bromofórmio (tribromometano)		0,040	mg/kg MS
bromometano		0,050	mg/kg MS
cloroetileno (cloreto de vinilo)		0,010	mg/kg MS
clorofórmio (triclorometano)		0,010	mg/kg MS
dibromoclorometano		0,020	mg/kg MS
1.2-dibromoetano		0,008	mg/kg MS
diclorodifluorometano		0,050	mg/kg MS
1,1-dicloroetano		0,010	mg/kg MS
1,2-dicloroetano		0,003	mg/kg MS
1,1-dicloroetileno		0,003	mg/kg MS
cis-dicloroetileno		0,003	mg/kg MS
trans-dicloroetileno			
		0,003	mg/kg MS
diclorometano		0,010	mg/kg MS
1,2-dicloropropano		0,050	mg/kg MS
1,3-dicloropropeno	reportados isómeros cis 1,3 - dicloropropeno, trans 1,3 - dicloropropeno	0,050	mg/kg MS
	dicloropropeno, trans 1,3 -	0,050	
tetracloreto de carbono (tetraclorometano)	dicloropropeno, trans 1,3 -	·	mg/kg MS
tetracloreto de carbono (tetraclorometano) 1,1,1,2-tetracloroetano	dicloropropeno, trans 1,3 -	0,010	mg/kg MS mg/kg MS
1,3-dicloropropeno tetracloreto de carbono (tetraclorometano) 1,1,1,2-tetracloroetano 1,1,2,2-tetracloroetano tetracloroetileno	dicloropropeno, trans 1,3 -	0,010 0,010 0,010	mg/kg MS mg/kg MS mg/kg MS
tetracloreto de carbono (tetraclorometano) 1,1,1,2-tetracloroetano 1,1,2,2-tetracloroetano tetracloroetileno	dicloropropeno, trans 1,3 -	0,010 0,010 0,010 0,010	mg/kg MS mg/kg MS mg/kg MS mg/kg MS
tetracloreto de carbono (tetraclorometano) 1,1,1,2-tetracloroetano 1,1,2,2-tetracloroetano	dicloropropeno, trans 1,3 -	0,010 0,010 0,010	mg/kg MS mg/kg MS

Avali	ação da Qualidade do Solo		
Parâmetros	NOTAS ADICIONAIS	Limite de Quantificação	Unidade
triclorofluorometano		0,050	mg/kg MS
Clorobenzenos			
clorobenzenos		0,010	mg/kg MS
1,2-diclorobenzeno		0,005	mg/kg MS
1,3-diclorobenzeno		0,005	mg/kg MS
1,4-diclorobenzeno		0,005	mg/kg MS
hexaclorobenzeno		0,005	mg/kg MS
1,2,4-triclorobenzeno		0,005	mg/kg MS
Clorofenóis			
2-clorofenol		0,01	mg/kg MS
2,4-diclorofenol	reportado conjuntamente com 2.5- diclorofenol	0,02	mg/kg MS
pentaclorofenol		0,005	mg/kg MS
2,4,5-triclorofenol		0,01	mg/kg MS
2,4,6-triclorofenol		0,01	mg/kg MS
Bifenilo policlorados (PCB)			
bifenilo policlorados (PCB)		0,021	mg/kg MS
Hidrocarbonetos de petróleo (TPH)			
hidrocarbonetos de petróleo C ₆ -C ₁₀		10	mg/kg MS
hidrocarbonetos de petróleo C>10-C16		5	mg/kg MS
hidrocarbonetos de petróleo C>16-C34		10	mg/kg MS
hidrocarbonetos de petróleo C _{>34} -C ₅₀	fração C34-C40	5	mg/kg MS
Cetonas			
acetona		1	mg/kg MS
butanona		0,5	mg/kg MS
Produtos fitofarmacêuticos (Pesticidas)			
aldrina		0,01	mg/kg MS
2,2-bis(p-clorofenil)-1,1-dicloroetileno		0,01	mg/kg MS
clofenotano (4,4-DDT)		0,01	mg/kg MS
clordano	reportado sob a forma de chlordane cis e chlordane trans separadamente	0,01	mg/kg MS
dieldrina		0,01	mg/kg MS
endossulfão	reportado sob a forma de alfa endosulfão e beta endossulfão, separadamente	0,01	mg/kg MS
endrina		0,01	mg/kg MS
epóxido de heptacloro		0,01	mg/kg MS
γ-HCH & γ-BHC (hexaclorociclohexano / lindano)		0,01	mg/kg MS
heptacloro		0,01	mg/kg MS
metoxicloro		0,01	mg/kg MS
TDE		0,01	mg/kg MS
Vários			
éter terc-butílico e metílico (MTBE)		0,05	mg/kg MS
hexacloroetano		0,01	mg/kg MS
Características do solo			
condutividade elétrica		1	mS/m
matéria seca		0,1	%
pH		2-12	Escala de Sorensen
granulometria (> 75 μ m)		0,1	%

A tabela seguinte (Tabela n°5) reúne os parâmetros que estão a ser avaliados na matriz águas subterrâneas. Os resultados analíticos encontram-se reunidos **ANEXO 6** (Tabela e boletins das análises águas subterrâneas).

Tabela 5: Lista de Parâmetros contemplados na matriz águas subterrâneas

Avaliação da Qualidade Águas S	Subterraneas	
Parâmetros	Limiar/LQA	Unidada
nH (modicão local)	5,5 - 9	Unidade Escala Sorënsen
pH (medição local)	· ·	
Condutividade (medição local)	2500	μS/cm
Amónia Nitratos	0,5 50	mg/l NH4 mg/l NO3
Cloretos	250	-
Sulfatos	250	mg/1 Cl mg/1 SO4
Nitritos	0,5	mg/1 NO2
Fósforo	0,13	
Postato		mg/1 P
	200	mg/1 P2O5
Alumínio	200	μg/1 A1
Arsénio	0,01	mg/l As
Cádmio	0,005	mg/1 Cd
Chumbo	0,01	mg/l Pb
Cobre	2	mg/1 Cu
Crómio	50	μg/1 Cr
Ferro	200	μg/1 Fe
Manganês	50	μg/1 Mn
Mercúrio	0,001	mg/l Hg
Níquel	20	μg/1 Ni
Prata	10	μg/1 Ag
Selénio	30	μg/1Se
Zinco	50	μg/1Zn
Cobalto	10	mg/1 Co
litânio	Nd	μg/1 Ti
Vanádio	1	mg/1V
Benzeno	1	μg/1
Tolueno	7	μg/1
Etilbenzeno	4	μg/1
neta- & para-Xileno	-	μg/1
orto-Xileno	-	μg/1
Soma de Xilenos	2,4	μg/l
Éter terc-butilmetílico (MTBE)	0,65	μg/1
TPH Totais C5-C10	-	μg/1
TPH Totais C10-C40	10	μg/1
Tetracloroeteno	Soma=10	μg/1
Tricloroeteno	JUIIId-10	μg/1
Naftaleno	2,4	μg/1
Acenaftileno	1,3	μg/1
Acenafteno	0,06	μg/1
Fluoreno	1,5	μg/1
Fenantreno	0,003	μg/1
Antraceno	0,1	μg/1
Fluoranteno	0,1	μg/1

Avaliação da Qualidade Águas Subterrâneas								
Parâmetros	Limiar/LQA	Unidade						
Pireno	0,0023	μg/1						
Benzo(a)antraceno	0,0001	μg/1						
Criseno	0,003	μg/1						
Benzo(a)pireno	0,01	μg/1						
Dibenzo(a,h) antraceno	0,0014	μg/1						
Benzo(b)fluoranteno		μg/1						
Benzo(k)fluoranteno	C 0.1	μg/1						
Benzo(ghi)perileno	Soma=0,1	μg/1						
Indeno(1,2,3-cd)pireno		μg/1						
COT	-	mg/l						
Oxigénio Dissolvido	70	% O2						

6- Conclusões e Recomendações

O presente relatório, cujo o objeto principal é a apresentação dos resultados das análises realizadas dentro do perímetro da nova unidade HVO, reúne a informação que permite concluir que:

i) <u>Nos solos superficiais a subsuperficiais</u> não existe qualquer afetação que possa condicionar a recepção da nova unidade industrial. Todos os parâmetros avaliados encontram-se abaixo dos limiares estabelecidos no guia APA "valores de referência para o solo" - Solos contaminados - Guia Técnico, Setembro 2022.

Os resultados que corroboram esta conclusão foram comparados com a tabela D, solos superficiais; com consumo de água subterrânea em meio comercial/industrial.

ii) <u>Nas águas subterrâneas</u> foi detectada afectação de metais, em particular de Alumínio, Chumbo, Ferro, Manganês. Outros elementos apresentam não conformidades, sem, contudo, apresentarem uma relevância significativa, tais como Cloretos e Sulfatos.

Como recomendações, consideramos que não existe necessidade de desenvolver o estudo da matriz solo. Contudo, tendo em consideração a afectação das águas subterrâneas, em particular de metais, consideramos pertinente o desenvolvimento de um estudo hidrogeológico de pormenor com instalação de mais estruturas de monitorização, em particular piezómetros. Após a modelação do sitema hidrogeológico, caso de considere pertinente, deve ser realizada uma análise de risco de saúde pública e ambiente e dimensionado um eventual programa de contenção/remediação do área afetada.

ANEXOS:

Anexo 1: Resultados analíticos e boletins Análises aos Solos recolhidos na zona HVO;

<u>Anexo 2</u>: Log´s das sondagens e piezómetros adicionais instalados na zona HVO (PZ-BH1; PZ-BH3; PZ-BH-4; PZ-BH6 e PZ-BH9)

Anexo 3: Posição relativa e absoluta dos piezómetros - Refinaria de Sines - Envolvente do HVO

Anexo 4: Boletins analíticos - 2a Campanha semestral de 2021 - Refinaria de Sines;

<u>Anexo 5</u>: Log´s das sondagens e piezómetros adicionais instalados na zona HVO (PZ-BH1; PZ-BH3; PZ-BH-4; PZ-BH6 e PZ-BH9).

Anexo 6: Resultados analíticos análises águas subterrâneas recolhidas na zona HVO;

Anexo 1: Resultados analíticos Análises aos Solos recolhidos na zona HVO;

Avaliação da Qualidade do Solo GALP Energia, S. A. HVO													
Tipo de amostra: Liners Material amostrado: Solo Data da amostragem (AAAA-MM-DD): outubro 20	Sines 380'W 37"57.047"N; 8"48.377"W 37" Liners Solo 2 outubro 2022	Liners Liners Solo Solo outubro 2022 outubro 2022	HVO solo 11		Sines 37° 57.051%; 8° 48.263°W 37° 57.051%; 8° 48.268°W 3 Liners Liners Solo Solo outubro 2022 outubro 2022	Liners Solo outubro 2022 ou		Sines Sines 77*57.062'N; 8*48.224'W 37*57.043'N; 8 Liners Liners Solo Solo outubro 2022 outubro 2	8" 48.223'W 37" 57.061'N; 8" 48.197'W 5 Liners Solo 2022 outubro 2022	- Sines Sines Sines 37" 57.046"N; 8" 48.196"W 37" 57.060"N; 8" 48.174" Liners Liners Solo Solo outubro 2022 outubro 2022	Sines V 37*57.043'N; 8*48.175'W Liners Soto outubro 2022	Liners Liners Solo Solo outubro 2022 outubro 2022	Liners Solo outubro 2022
Profundidade de anostragem (m): 1.5 VR (ii) VOR(iii) VR (iii) VR (iiii) VR (iiiii) VR (iiiiiiii) VR (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	1,5 VA	1,5 1,5 VA VA VA <0,50 <0,50	1,5 1,5 1,5 VA VA VA 40,50 <0,50 <0,50 <0,50	1,5 1,5 VA VA VA	1,5 1,5 VA VA VA	VA (mg/kg de massa seca)	1,5 1,5 VA VA <0,50 <0,50	1,5 1,5 VA VA	VA <0,50	1,5 1,5 VA VA = <0,50 <0,50	1,5 VA <0,50	1,5 1,5 VA VA = <0,50 <0,50	1,5 VA <0,50
artelio	<0,50 3,41 0,015 <1,0 <1,0 <1,4 <0,20 <1,0 1,12	1,26 0,84 7,56 6,46 0,081 0,030 -1,01 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0	1,64 2,76 2,78 2,78 2,78 2,78 2,76 2,71 2,78 2,78 2,77 2,77 2,77 2,77 2,77 2,77	3.97 2.56 30.1 32.5 0.463 0.448 3.6 3.0 -0.40 -0.40 21.9 14.4 7.86 3.93 8.0 7.0 12.7 13.0	2.95 3.52 18.8 24.1 0.255 0.312 0.44 1.5 0.40 40,40 40,40 8,7 11,6 2.86 4,06 4.1 4,7 9.38 10,6	1,84 14,8 0,180 1,1 <0,40 8,2 2,16 3,6 6,39	2,69 2,31 27,6 21,9 0,355 0,333 2,1 1,9 c0,40 c0,40 114,4 9,2 5,78 3,07 6,6 6,2	1,47 3,70 12,2 20,8 0,118 0,319 1,0 2,3 40,40 40,40 5,5 11,9 0,93 5,50 1,8 6,2 4,59 8,67	6,45 0,074 -1,0 0 -0,40 3,6 0,89 1,6 3,10	2.78 0.92 32.3 14.3 0.371 0.998 2.0 <1,0 <1,0 <4,0 <4,0 <4,0 <5,0 <1	2,16 43,5 0,348 2,5 <0,40 11,2 3,38 5,8	d)50 2,74 1,52 31,5 c0,010 0,308 c1,0 2,1 c0,40 c0,40 1,2 11,3 c0,20 3,53 c1,0 5,3 c0,50 10,5	1,08 11,7 0,094 <1,0 <0,40 4,5 0,99 1,7 3,42
Cromio V 8,00 4,0,660 4,0,660 6,0,66	0,064 40,010 40,40 41,0 40,50 41,00 40,50 0,190 1,82 43,0	0.164 0.882 (0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.040 0.40 0.	0,218 0,405 0,236 0,236 0,310 0,011 0,011 0,011 0,011 0,011 0,04 0,40 0,48 2,9 6,5 9,4 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,	0,250 0,204 0,015 0,026 0,55 0,40 9,9 10,4 0,50 0,55 0,50 1,00 0,50 1,00 0,50 1,00	0.278 0.247 0.025	0,208 0,012 <0,40 4,7 <0,50 <1,00 <0,50 0,310 6,16 9,8	0,232 0,260 0,018 0,019 0,44 0,41 8,2 7,1 -0,550 -0,50 -1,000 -1,000 -0,550 -0,50 -0,550 -0,50 -0,50 -0,50 12,8 10,2 12,8 10,2 12,4 14,0	0,583 0,259 0,027 0,010 <0,40 <0,40 2,6 7,0 <0,50 <0,50 <1,00 <1,00 <0,50 <0,50 <1,00 <1,00 <1,00 <1,00 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,50 <1,5	0 0,011 0 <0,40 2,4 0 <0,50 1 <1,00 0 <0,50 1 0,172 3,57	0,227 0,159 0,016 <0,010 0,40 <0,40 0,40 <0,40 0,50 <0,50 0,50 <0,50 0,50 <0,50 0,50 <0,50 0,50 <0,50 1,00 <0,50 <0,50 1,100 1	0,264 0,016 0,55 9,1 <0,50 <1,00 <0,50 0,355 10,8 22,9	 <0,060 0,173 <0,010 0,026 <0,40 0,42 <1,0 7,5 <0,50 <0,10 <0,237 <0,55 <0,5 <0,5 <0,0 <0,0<th>0,184 <0,010 <0,40 2,4 <0,50 <1,00 <0,50 0,177 3,93 5,3</th>	0,184 <0,010 <0,40 2,4 <0,50 <1,00 <0,50 0,177 3,93 5,3
Compostor From Micro Compostor From Micro	<0,010 <0,040 <0,020 <0,020 <0,10 <0,030	 <0,010 <0,010 <0,040 <0,040 <0,020 <0,10 <0,10 <0,030 <0,030 <0,040 <0,040 	40,010 40,010 40,010 40,040 40,040 40,040 40,020 40,020 40,020 40,10 40,10 40,10 40,30 40,303 40,303 40,040 40,040 40,020	 <0,010 <0,010 <0,040 <0,040 <0,020 <0,020 <0,020 <0,10 <0,10 <0,030 <0,030 <0,040 <0,040 		<0,010 <0,040 <0,020 <0,10	<.0.010 <0.010 <0.040 <0.040 <0.040 <0.040 <0.020 <0.020 <0.10 <0.10 <0.030 <0.030 <0.030 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.00	 -0,010 -0,040 -0,020 -0,020 -0,030 -0,030 -0,030 -0,040 	0 <0,010 0 <0,040 0 <0,040 0 <0,020 0 <0,10 0 <0,030	-0,010 <0,010 -0,040 <0,040 -0,020 <0,020 -0,10 <0,10 -0,030 <0,030 -0,030 <0,030		 <0.010 <0.010 <0.040 <0.020 <0.020 <0.030 <0.030 <0.030 <0.030 <0.030 <0.040 	<0,010 <0,040 <0,020 <0,10 <0,030
Hidrocarbonetos aromáticos policícicos (PAH)	<0,010 <0,010 <0,0040 <0,010 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	40,010 40,010 40,010 40,010 40,004 40,000 40,004 40,000 40,005 40,005 40,005 40,005 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010	(d),816 (d),916 (d),91	<0,016 <0,016 <0,017 <0,010 <0,0040 <0,0040 <0,010 <0,010 <0,0050 <0,0050 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010		<0,010 <0,010	(0,010 (0,0)(0,010 (0,0)(0,0)(0,0)(0,0)(0,0)(0,0)(0,0)(0,	 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,011 	0 <0,010 0 <0,010 10 <0,0040 10 <0,0040 0 <0,0050 0 <0,0050 0 <0,0050 0 <0,000	40,010	<0,010 <0,010 <0,0040 <0,0010 <0,0010 <0,0050 <0,010 <0,010 <0,010	d0,010 d0,000 d0,000 d0,000 d0,000 d0,000 d0,000 d0,000 d0,000 d0,010 d	<0,010 <0,010 <0,010 <0,0040 <0,010 <0,0050 <0,010 <0,010 <0,010
Grance 9,50 <0,010 Giberroot (A.) Plantracene 0,10 <0,010 Heuntreron 13,50 <0,010 <0,010 Heuntreron 86,50 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	0,010 0,01	d0,010 d	-0.010	0,010 0,01	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	0,010 0,01	©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,010 <0,010 ©,01 <0,01 ©,010 <0,010	0	0,010 0,01	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,11	0,010 0,01	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
primo	<0,010 <0,020 <0,040 <0,050 <0,010 <0,010 <0,010	 <0,010 <0,020 <0,020 <0,040 <0,050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 	40,010 40,010 40,010 40,020 40,020 40,020 40,040 40,040 40,040 40,020 40,040 40,040 40,020 40,055 40,056 40,010 40,010 40,010 40,020 40,020 40,020 40,020 40,020 40,020	 <0,010 <0,010 <0,020 <0,020 <0,040 <0,040 <0,050 <0,010 <0,010	 d,010 <0,020 <0,020 <0,040 <0,040 <0,050 <0,010 <0,010	<0,010 <0,020 <0,040 <0,050 <0,010 <0,010 <0,010 <0,010 <0,010	-0,010 -0,010 -0,020 -0,020 -0,040 -0,040 -0,050 -0,050 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010	 0,010 0,020 0,040 0,040 0,050 0,050 0,050 0,050 0,010 0,010 0,010 0,010 0,010 0,010 	0 <0,020 0 <0,040 0 <0,050 0 <0,010 0 <0,010	(0,010 (0,010) (0,020 (0,020) (0,040 (0,040) (0,050 (0,050) (0,010 (0,010) (0,010 (0,010) (0,010 (0,010) (0,010 (0,010) (0,010 (0,010) (0,010 (0,010) (0,010) (0,010 (0,010)	<0,010 <0,020 <0,040 <0,050 <0,010 <0,010 <0,010	-0,010 -0,010 -0,020 -0,020 -0,040 -0,040 -0,050 -0,050 -0,050 -0,050 -0,010 -0,010 -0,020 -0,020 -0,020 -0,020	<0,010 <0,020 <0,040 <0,050 <0,010 <0,010 <0,000
12-dimension	<0,020 <0,0080 <0,050 <0,010 <0,0030 <0,0030 <0,0030 <0,0030 <0,0030 <0,0030	-0,0080		40,0080 40,0080 40,050 40,050 40,050 40,050 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030 40,0030	-0.0080 -0.0080 -0.050 -0.050 -0.010 -0.010 -0.010 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030	 0,0080 0,050 0,010 0,030 0,0030 0,0030 0,0030 0,0030 0,0030 	 <0,0080 <0,0080 <0,050 <0,050 <0,050 <0,050 <0,010 <0,0010 <0,0030 <0,010 <0,010 <0,010 	 <0,0080 <0,008 <0,055 <0,051 <0,051 <0,051 <0,003 <0,003	30	 <0,0080 <0,0080 <0,0080 <0,0080 <0,0080 <0,0010 <0,0030 	<0,0080 <0,050 <0,010 <0,010 <0,0030 <0,0030 <0,0030 <0,0030 <0,010	<	<0,0080 <0,050 <0,010 <0,0030 <0,0030 <0,0030 <0,0030 <0,0030 <0,0030
1.2-discreprepare 0.16 -4.0,050 1.2-discreprepare 0.16 -4.0,050 -4.0,050 1.2-discrepred (cs. Etrans) 0.06 -0.0,110 -4.0,050 -4.0,0	<0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0,050 -0,050 0,110 -0,10 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010	d)556	40,050 40,050 40,10 40,10 40,016 40,016 40,016 40,016 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010 40,010	0,550 0,05	<0.050 <0.10 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0,050 0,05	0,050	0 <0,10 0 <0,010 0 <0,010 0 <0,010 0 <0,010 0 <0,010 0 <0,010 0 <0,010	(40,950 (40,950) (40,10 (40,10) (40,10) (40,10) (40,010 (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010) (40,010)	<0,050 <0,10 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	0,050 0,05	<0,050 <0,10 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Triconfluorometano 4,00 <0,050	<0,050 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,0050 <0,0050	40,050 40,050 40,010 40,010 40,005 40,005 40,005 40,005 40,005 40,005 40,005 40,005 40,005 40,005 40,005 40,005	cd,556 cd,556 -6,559 cd,610 cd,610 -6,010 cd,005 cd,005 -6,005 cd,005 cd,005 -6,005 cd,005 -6,005 -6,005	 <0,050 <0,050 <0,010 <0,010 <0,005 	40,050 <0,050	<0,050 <0,010 <0,005 <0,005 <0,005 <0,005 <0,0050 <0,0050	<0,050	 0,050 0,050 0,010 0,005 	0 <0,010 5 <0,005 5 <0,005 6 <0,005 6 <0,005 0 <0,0050	 ◆0,050 ◆0,010 ◆0,010 ◆0,005 	<0,050 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,0050	-0,050 -0,050 -0,010 -0,010 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005 -0,005	<0,050 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,0050
1.000000000000000000000000000000000000	<0,010 <0,0050 <0,0050 <0,010 <0,010 <0,0210	<0,010 <0,010 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,0210 <0,0210 <8,80 <8,80	-0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,0000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000	<0,010 <0,010 <0,0050 <0,0050 <0,0050 <0,0050 <0.010 <0.010 <0.010 <0.010 <0.0210 <0.0210 <0.0210 <0.0210	<0,010 <0,010 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,0210 <0,0210 <8,80 <8,80	<8,80	-0,010	 -0,010 <0,010 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,021 <0,0210 <0,021 <8,80 <8,80 <8,80 <8,80 	0 <0,010 0 <0,010 10 <0,0210	<0,010 <0,010 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,0210 <0,0210 <8,80 <8,80	<0,010 <0,0050 <0,010 <0,010 <0,0210	<0,010 <0,010 <0,0050 <0,0050 <0,0050 <0,010 <0,010 <0,010 <0,010 <0,0210 <6,0210 <6,80 <6,80	<0,010 <0,0050 <0,010 <0,010 <0,0210 <8,80
hidrocarbonetos de petróleo C _{cur} C _{cu} 28,000 <5,0 hidrocarbonetos de petróleo C _{cur} C _{cu} 17,000 <10 hidrocarbonetos de petróleo C _{cur} C _{cu} 3,000,00 <5,0 Cetonas 16,00 <1,00 acetonas 16,00 <1,00 balancia (Malcos (inclinated baticos (vestidida)) 70,000 <0,00 Applicación (inclinated baticos (vestidida)) 6,09 <0,010 didentama (A 4-DDT) 1,40 <0,010	<.0 410 45,0 41,0 40,50 40,010 40,010	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$\frac{\darkspace{3.0}}{\darkspace{4.0}}\$ \$\frac{\darkspace{3.0}}{\darkspace{4.0}}\$ \$\frac{\darkspace{4.0}}{\darkspace{4.0}}\$ \$\frac{\darkspace{4.0}}{\darks	\$0 \$50 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$1	\$5,0 \$5,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1	<5,0 <10 <5,0 <1,0 <0,50 <0,010 <0,010	\$,0 \$,0 \$,0 \$,0 \$,0 \$,0 \$,0 \$,0 \$,0 \$,0	45.0 45.0 45.0 45.0 45.0 45.0 41.0 41.0 41.0 40.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50 60.50	<10 <5,0 <1,0 0 <0,50	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <4,0 <4,0 <4,0 <4,0 <6,50 <6,50 <6,50 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <6,00 <p< th=""><th><5,0 <10 <5,0 <1,0 <0,50 <0,010 <0,010</th><th><5,0 <5,0 <5,0 <10 <5,0 <5,0 <5,0 <1,0 <1,0 <0,50 <0,50 <0,50 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010</th><th><5,0 <10 <5,0 <1,0 <0,50 <0,010 <0,010</th></p<>	<5,0 <10 <5,0 <1,0 <0,50 <0,010 <0,010	<5,0 <5,0 <5,0 <10 <5,0 <5,0 <5,0 <1,0 <1,0 <0,50 <0,50 <0,50 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<5,0 <10 <5,0 <1,0 <0,50 <0,010 <0,010
doddano (ci. 8, trans)	<0,020 <0,010 <0,010 <0,010 <0,020 <0,020 <0,0100 <0,010	40,020 40,020 40,010 40,010 40,010 40,010 40,020 40,010 40,020 40,020 40,010 40,010 40,010 40,010 40,010 40,010	d0,000	-0,020 -0,020 -0,010 -0,010 -0,010 -0,010 -0,020 -0,020 -0,020 -0,020 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010	<0,020 <0,020 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,020 <0,020 <0,0100 <0,0100 <0,010 <0,0100 <0,010 <0,010	<0,020 <0,010 <0,010 <0,020 <0,020 <0,010 <0,010	0,020 0,020 0,010 0,010 0,010 0,010 0,010 0,020 0,020 0,020 0,01	 <0,020 <0,021 <0,010 <0,011 <0,011 <0,010 <0,020 <0,0100 <0,0100 <0,010 	0 <0,020 0 <0,010 0 <0,010 0 <0,010 0 <0,020 0 <0,010 0 <0,010 <<	40,020 40,020 40,010 40,010 40,010 40,010 40,010 40,020 40,020 40,010 4	<0,020 <0,010 <0,010 <0,020 <0,0100 <0,010	 ◆0,020 ◆0,010 ◆0,010 ◆0,010 ◆0,010 ◆0,010 ◆0,020 ◆0,020 ◆0,010 ◆0,010 ◆0,010 ◆0,010 	<0,020 <0,010 <0,010 <0,020 <0,010 <0,010
det retro-bullico e metilico (MRS) 1,50 < 0,050	<0,050 <0,010 <0,010 0,099 95,8 8,2 92,2	0,059	c0,556 c0,556 c0,556 c0,556 c0,556 c0,556 c0,556 c0,510 c0,510<	<0,050 <0,050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,050 <0,050 94,8 94,4 5,6 6,3 94,4 98,6	(0,550 (0	<0,050 <0,010 <0,010 0,085 98,0 4,8 98,4	-0,050 <0,050 -0,010 <0,010 <0,010 <0,010 0,048 0,040 94,4 95,4 5,3 5,5 95,9 93,6	c0,050 <0,0550	0 <0,010 0 <0,010 5 0,030 96,7 4,8	 ◆0.050 ◆0.010 ◆0.010	<0,050 <0,010 <0,010 0,046 94,4 5,6 96,5	<0,050	<0,050 <0,010 <0,010 0,026 96,2 5,3 97,5
Legenda: (Q: Limite de quantificação do método n.d Não determinado VA: - Valor anticado VIII - Volor do catado iniciado de catado													
Notas de preenchimento: Preencher, conforme apliciavel, a coluna referente aou VR, VOR, VEI ou VFIX, e eliminar as restantes. Inserie tratas colunas quantas as amostras de solo recolhidas, organizadas por ponto de amostragem e por data de ciliminar linhas correspondentes aos contaminantes não analisados e inserif linhas para contaminantes analisados e inserif linhas para contaminantes analisados e	ão constantes na matriz.												
IF Fonte (Indicar a fonte (Induindo, p.e., a tabela selecionada, o uso do solo, a sua textura e a utilização, ou não, de i UQ + WA S VR ou VOR ou VEI ou VFN	ua subterrânea, se aplicáveis)]:												

Boletim Analítico:

Designação da Amostra:

Tipo Amostra:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Solos

Versão: 1.0

Requisitante:

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

ID Colheita: 2204704 Ponto de Amostragem: HVO Solo 3

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05817

Caracterização de Solos - Fábrica HVO

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	96,2 %	±6%	
pH	LNEC E203:1967	6,2 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,066 mS/cm	±22,4%	
Fração de solo >75µm (1)	APa022	96,8 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	<0,50 mg/kg As (b.s.)		 18
Bário (4)(1)	S-METAXHB1	2,70 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,014 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)		
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	1,0 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	<0,20 mg/kg Co (b.s.)		 80
Cobre (4)(1)	S-METAXHB1	<1,0 mg/kg Cu (b.s.)		 230
Crómio (4)(1)	S-METAXHB1	0,72 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	<0,060 mg/kg Cr VI (b.s.)		 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	<1,0 mg/kg Ni (b.s.)		 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,102 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	0,85 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	<3,0 mg/kg Zn (b.s.)		 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05817

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo **Boletim Analítico:** 2022/05818

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

ID Colheita: 2204705 Ponto de Amostragem: HVO Solo 4

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	95,8 %	±6%	
pH	LNEC E203:1967	8,2 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,099 mS/cm	±21,1%	
Fração de solo >75µm (1)	APa022	92,2 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	<0,50 mg/kg As (b.s.)		 18
Bário (4)(1)	S-METAXHB1	3,41 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,015 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)		
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	1,4 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	<0,20 mg/kg Co (b.s.)		 80
Cobre (4)(1)	S-METAXHB1	<1,0 mg/kg Cu (b.s.)		 230
Crómio (4)(1)	S-METAXHB1	1,12 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,064 mg/kg Cr VI (b.s.)	±25,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	<1,0 mg/kg Ni (b.s.)		 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,190 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	1,82 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	<3,0 mg/kg Zn (b.s.)		 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Pagina: 1 de 3

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 ٧L
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05818

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05819

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines ID Colheita: 2204708 Ponto de Amostragem: HVO Solo 7

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais							
Determinação	Método	Resultado	Incerteza		٧L		
Matéria seca	APa048-19 (2019-10-16)	97,2 %	±6%				
pH	LNEC E203:1967	6,8 Escala de Sorënsen	±0,1				
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,040 mS/cm	±25,9%				
Fração de solo >75µm (1)	APa022	92,7 %					
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)			40		
Arsénio (4)(1)	S-METAXHB1	1,26 mg/kg As (b.s.)	±20%		18		
Bário (4)(1)	S-METAXHB1	7,56 mg/kg Ba (b.s.)	±20%		670		
Berílio (4)(1)	S-METAXHB1	0,081 mg/kg Be (b.s.)	±20%		8		
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)					
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)			1,9		
Chumbo (4)(1)	S-METAXHB1	4,2 mg/kg Pb (b.s.)	±20%		120		
Cobalto (4)(1)	S-METAXHB1	0,68 mg/kg Co (b.s.)	±20%		80		
Cobre (4)(1)	S-METAXHB1	1,2 mg/kg Cu (b.s.)	±20%		230		
Crómio (4)(1)	S-METAXHB1	3,26 mg/kg Cr (b.s.)	±20%		160		
Crómio hexavalente (4)(1)	S-CR6-IC	0,164 mg/kg Cr VI (b.s.)	±20,9%		8		
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)			3,9		
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)			40		
Níquel (4)(1)	S-METAXHB1	2,4 mg/kg Ni (b.s.)	±20%		270		
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)			40		
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)			5,5		
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)			3,3		
Urânio (4)(1)	S-METMSHB3	0,156 mg/kg U (b.s.)	±20%		33		
Vanádio (4)(1)	S-METAXHB1	5,48 mg/kg V (b.s.)	±20%		86		
Zinco (4)(1)	S-METAXHB1	3,4 mg/kg Zn (b.s.)	±20%		340		
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)			0,32		
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)			34		
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)			1,1		
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)			6,4		
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)					
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)					
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)			26		
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)			1,6		
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			21		
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,15		
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)			0,67		
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)			0,3		
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,1		
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			12		
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Netablanck (RY)	Determinação	Método	Resultado	Incerteza	 VL
	Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Pame (μ1) S-PAH-006606 40.00 mg/lg (b.s.)	Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Inestitutations ((f))	Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
2-methonathamo (κ(γ)) S-POCKMSP7 40,000 mayla (b.s.) - <td< td=""><td>Pireno (4)(1)</td><td>S-PAHGMS05</td><td><0,010 mg/kg (b.s.)</td><td></td><td> 96</td></td<>	Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1.1.1.2-bitacionoteatrio (4)(1)	1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1.1.1-dericonetano (4(1)	2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1.1.2.2.febradoroelano (4(1) S-VOCCMB07	1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1.1.21.11.1	1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1.1-dictorestano (κ(γ)	1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1.1-dictoropetano (XY)	1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1.2-dichromestamo (4(Y1)	1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1.2-dictorotano (4)1	1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1.2-dicloropeano (4)(1)	1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1.2.deicloropropanio (s)(1)	1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1.2.4.driotorbenzeno (k(1)	1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,3-diciorobenzeno (4)(1) S-VOCGMS07	1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1.4diciorobenzano (4)(1) S-VOCGMS07 40,005 mg/kg (b.s.)	1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
Bromoficion metano (4)(1) S-VOCGMS07	1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
Bromonfermio (a)(1) S-VOCGMS07 <0,040 mg/kg (b.s.)	1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromometano ((4)) S-VOCGMS07 <0,050 mg/kg (b.s.) cis.1-2.dicilororeteno ((4)) S-VOCGMS07 <0,050 mg/kg (b.s.)	Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
cis-1,2-dictoropteno (A)(1) S-VOCGMS07 <0.0030 mg/kg (b.s.)	Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
S-VOCGMS07 \$0,050 mg/kg (b.s.) \$0.000 mg/kg (b.s.) \$0.0000	Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
Cloreto de Vinilo (4)(1)	cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
Cioreto de Vinilo (4)(1) S-VOCGMS07 <0,010 mg/kg (b.s.)	cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Clorobenzeno (λ(1) S-VOCGMS07 <0,010 mg/kg (b.s.)		S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Cloroformio (4)(1) S-VOCGMS07 C,0.010 mg/kg (b.s.) C		S-VOCGMS07			 2,4
Dibromoclorometano (4)(1) S-VOCGMS97 <0,020 mg/kg (b.s.)		S-VOCGMS07			 0,47
Dictorodifiuormetano (4)(1) S-VOCGMS07 \$0.050 mg/kg (b.s.) S-VOCGMS07 \$0.010 mg/kg (b.s.) S-VOCGMS07 \$0.0030 mg/kg (b.s.) S-VO		S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Dictorometano (4)(1) S-VOCGMS07 S-VOCG		S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Tetraclorometano (4)(1) S-VOCGMS07 <0,010 mg/kg (b.s.)		S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetracloroeteno (4)(1) S-VOCGMS07 <0,010 mg/kg (b.s.)		S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
trans-1,2-dictoroeteno (4)(1) S-VOCGMS07 <0,0030 mg/kg (b.s.)		S-VOCGMS07			 1,9
trans-1,3-dicloropropeno (4)(1) S-VOCGMS07 <0,050 mg/kg (b.s.)					 1,3
Tricloroeteno (4)(1) S-VOCGMS07 <0,010 mg/kg (b.s.)		S-VOCGMS07			
Triclorofluormetano (4)(1) S-VOCGMS07 < 0,050 mg/kg (b.s.)					 0,55
Fenol (4)(1)		S-VOCGMS07			 4
2-clorofenol (4)(1) S-CLPGMS01		S-CLPGMS01			 9,4
2,4,5-triclorofenol (4)(1) S-CLPGMS01 <0,010 mg/kg (b.s.)		S-CLPGMS01			 3,1
2,4,6-triclorofenol (4)(1) S-CLPGMS01 S-CLPGMS01 S-CLPGMS01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD04 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-OCPECD01 S-OCPE					 9,1
Pentaclorofenol (4)(1)					 2,1
Hexaclorobenzeno (HCB) (4)(1) S-OCPECD01 S-OCPECD01 S-OCPECD04 S-OCPECD04 Cois-clordano (4)(1) S-OCPECD04 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-VOCGMS07 S-OCPECD01 S					 2,9
Hexaclorobutadieno (HCBD) (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					 0,66
cis-clordano (4)(1) S-OCPECD04 <0,010 mg/kg (b.s.)					 0,031
trans-clordano (4)(1) S-OCPECD04 <0,010 mg/kg (b.s.) Acetona (4)(1) S-VOCGMS07 <1,0 mg/kg (b.s.) Butanona (MEK) (4)(1) S-VOCGMS07 <0,50 mg/kg (b.s.) 4,4-DDT (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Dieldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Dieldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Endrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) cis-heptacloro epóxido (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) trans-heptacloro epóxido (4)(1) S-OCPECD01 S-OCP					
Acetona (4)(1) S-VOCGMS07 <1,0 mg/kg (b.s.)					
Butanona (MEK) (4)(1) S-VOCGMS07 <0,50 mg/kg (b.s.) 4,4-DDT (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Dieldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Dieldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Endrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) Cis-heptacloro epóxido (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.) trans-heptacloro epóxido (4)(1) S-OCPECD01					 16
4,4-DDT (4)(1)					 70
Aldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					 1,4
Dieldrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					 0,088
Endrina (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					 0,088
cis-heptacloro epóxido (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					
trans-heptacloro epóxido (4)(1) S-OCPECD01 <0,010 mg/kg (b.s.)					 0,04
Metoxicioro (4)(1) S-UCPECDU1 <(1)(10) ma/ka (h s)					
	Metoxicloro (4)(1)	S-OGPECD01	<0,010 mg/kg (b.s.)		 1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05819

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05820

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204709 Ponto de Amostragem: HVO Solo 8

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Conclusão da Análise: 8 novembro 2022 Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022

Determinação	Método	Resultado	Incerteza	 VL
Matéria seca	APa048-19 (2019-10-16)	96,7 %	±6%	
pH	LNEC E203:1967	6,4 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,063 mS/cm	±22,6%	
Fração de solo >75µm (1)	APa022	96,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	0,84 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	6,46 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,030 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)		
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	3,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	0,55 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	1,4 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	2,03 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,082 mg/kg Cr VI (b.s.)	±23,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	1,2 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,121 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	2,98 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	9,2 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
II GII 3-II CPLAULU CPUNIUU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05820

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05821

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines 2204712

Ponto de Amostragem: HVO Solo 11

ID Colheita:

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	96,5 %	±6%	
pH	LNEC E203:1967	5,7 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,039 mS/cm	±26,4%	
Fração de solo >75µm (1)	APa022	98,4 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	1,64 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	26,7 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,113 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	1,4 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	5,9 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	0,82 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	3,3 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	4,69 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,218 mg/kg Cr VI (b.s.)	±20,5%	 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	2,9 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,212 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	6,62 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	4,6 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05821

Solctiiii Allalitico. Lozz/0002 i

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo **Boletim Analítico:** 2022/05822

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

ID Colheita: 2204713 Ponto de Amostragem: HVO Solo 12

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	93,8 %	±6%	
pH	LNEC E203:1967	6,0 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,041 mS/cm	±25,7%	
Fração de solo >75µm (1)	APa022	96,8 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,70 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	21,2 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,288 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,3 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	9,8 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	2,55 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	5,5 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	9,45 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,405 mg/kg Cr VI (b.s.)	±20,2%	 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	6,6 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,380 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	10,9 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	13,1 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Pagina: 1 de 3

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	0,012 mg/kg (b.s.)	±30%	 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05822

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05823

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines 2204716 Ponto de Amostragem: HVO Solo 15

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

ID Colheita:

Determinações laboratoriais				
Determinação	Método	Resultado	Incerteza	 VL
Matéria seca	APa048-19 (2019-10-16)	90,6 %	±6%	
рН	LNEC E203:1967	5,9 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,038 mS/cm	±26,7%	
Fração de solo >75µm (1)	APa022	97,2 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,78 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	36,6 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,404 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	3,4 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	14,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	3,56 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	6,7 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	12,2 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,236 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,017 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,48 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	9,4 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,515 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	14,8 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	20,8 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
` ' '				

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
uans-neptadioro epoxido (4)(1)	5 55. 25201	5,5 to mg/ng (b.o.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05823

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204717 Ponto de Amostragem: HVO Solo 16

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05824

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,8 %	±6%	
pH	LNEC E203:1967	6,6 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,050 mS/cm	±24,0%	
Fração de solo >75µm (1)	APa022	94,4 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	3,97 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	30,1 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,463 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	3,6 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	21,9 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	7,86 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	8,0 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	12,7 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,250 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,015 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,55 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	9,9 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,571 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	15,1 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	17,8 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05824

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05825

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204720 Ponto de Amostragem: HVO Solo 19

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,4 %	±6%	
pH	LNEC E203:1967	6,3 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,050 mS/cm	±24,0%	
Fração de solo >75µm (1)	APa022	98,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,56 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	32,5 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,448 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	3,0 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	14,4 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	3,93 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	7,0 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	13,0 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,204 mg/kg Cr VI (b.s.)	±20,6%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,026 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	10,4 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,501 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	13,6 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	20,3 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05825

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05826

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204721 Ponto de Amostragem: HVO Solo 20

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,2 %	±6%	
pH	LNEC E203:1967	5,5 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,075 mS/cm	±21,9%	
Fração de solo >75µm (1)	APa022	98,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,95 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	18,8 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,255 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	1,4 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	8,7 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	2,86 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	4,1 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	9,38 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,278 mg/kg Cr VI (b.s.)	±20,3%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,017 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	5,6 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,385 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	9,52 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	13,0 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Pagina: 1 de 3

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
II GII 3-II CPLAULU CPUNIUU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05826

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

2204724

Boletim Analítico: 2022/05827

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

Ponto de Amostragem: HVO Solo 23

ID Colheita:

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,7 %	±6%	
pH	LNEC E203:1967	5,6 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,054 mS/cm	±23,5%	
Fração de solo >75µm (1)	APa022	99,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	3,52 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	24,1 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,312 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	1,5 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	11,6 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	4,06 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	4,7 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	10,6 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,247 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,026 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,40 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	6,4 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,392 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	10,7 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	14,3 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,028 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 -,
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
(4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05827

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05828

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204725 Ponto de Amostragem: HVO Solo 24

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	98,0 %	±6%	
pH	LNEC E203:1967	4,8 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,085 mS/cm	±21,5%	
Fração de solo >75µm (1)	APa022	98,4 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	1,84 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	14,8 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,180 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	1,1 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	8,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	2,16 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	3,6 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	6,39 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,208 mg/kg Cr VI (b.s.)	±20,6%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,012 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	4,7 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,310 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	6,16 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	9,8 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
	S-OCPECD04	<0,010 mg/kg (b.s.)		
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Acetona (4)(1)	S-VOCGMS07			 70
Butanona (MEK) (4)(1)	S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 1,4
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)				
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
				 1,6
cis-heptacloro epóxido (4)(1) trans-heptacloro epóxido (4)(1) Metoxicloro (4)(1)	S-OCPECD01 S-OCPECD01 S-OCPECD01	<0,010 mg/kg (b.s.) <0,010 mg/kg (b.s.) <0,010 mg/kg (b.s.)		

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05828

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05829

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204728 Ponto de Amostragem: HVO Solo 27

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,4 %	±6%	
pH	LNEC E203:1967	6,3 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,048 mS/cm	±24,4%	
Fração de solo >75µm (1)	APa022	95,9 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,69 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	27,6 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,355 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,1 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	14,4 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	5,78 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	6,6 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	10,9 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,232 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,018 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,44 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	8,2 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,487 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	12,8 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	17,4 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
II GII 3-II CPLAULU CPUNIUU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05829

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

 ${\sf Em \ todos \ os \ resultados \ expressos \ na \ forma \ "<X" \ ou \ "\le X", \ "X" \ \'e \ o \ Limite \ de \ Quantificação \ (LQ) \ do \ m\'etodo \ analítico.}$

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05830

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204729 Ponto de Amostragem: HVO Solo 28

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	95,4 %	±6%	
pH	LNEC E203:1967	5,5 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,040 mS/cm	±26,0%	
Fração de solo >75µm (1)	APa022	93,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,31 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	21,9 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,333 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	1,9 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	9,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	3,07 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	6,2 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	11,3 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,260 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,019 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,41 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	7,1 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,459 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	10,2 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	14,0 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05830

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

ID Colheita: 2204732 Ponto de Amostragem: HVO Solo 31

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05831

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais							
Determinação	Método	Resultado	Incerteza		٧L		
Matéria seca	APa048-19 (2019-10-16)	95,8 %	±6%				
рН	LNEC E203:1967	4,9 Escala de Sorënsen	±0,1				
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,032 mS/cm	±29,0%				
Fração de solo >75µm (1)	APa022	95,9 %					
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)			40		
Arsénio (4)(1)	S-METAXHB1	1,47 mg/kg As (b.s.)	±20%		18		
Bário (4)(1)	S-METAXHB1	12,2 mg/kg Ba (b.s.)	±20%		670		
Berílio (4)(1)	S-METAXHB1	0,118 mg/kg Be (b.s.)	±20%		8		
Boro (4)(1)	S-METAXHB2	1,0 mg/kg B (b.s.)	±20%				
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)			1,9		
Chumbo (4)(1)	S-METAXHB1	5,5 mg/kg Pb (b.s.)	±20%		120		
Cobalto (4)(1)	S-METAXHB1	0,93 mg/kg Co (b.s.)	±20%		80		
Cobre (4)(1)	S-METAXHB1	1,8 mg/kg Cu (b.s.)	±20%		230		
Crómio (4)(1)	S-METAXHB1	4,59 mg/kg Cr (b.s.)	±20%		160		
Crómio hexavalente (4)(1)	S-CR6-IC	0,583 mg/kg Cr VI (b.s.)	±20,1%		8		
Mercúrio (4)(1)	S-HG-AFSHB	0,027 mg/kg Hg (b.s.)	±20%		3,9		
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)			40		
Níquel (4)(1)	S-METAXHB1	2,6 mg/kg Ni (b.s.)	±20%		270		
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)			40		
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)			5,5		
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)			3,3		
Urânio (4)(1)	S-METMSHB3	0,223 mg/kg U (b.s.)	±20%		33		
Vanádio (4)(1)	S-METAXHB1	5,62 mg/kg V (b.s.)	±20%		86		
Zinco (4)(1)	S-METAXHB1	<3,0 mg/kg Zn (b.s.)			340		
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)			0,32		
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)			34		
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)			1,1		
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)			6,4		
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)					
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)					
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)			26		
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)			1,6		
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			21		
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,15		
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)			0,67		
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)			0,3		
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,1		
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			12		
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
		. 5.5()			-,-		

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05831

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo **Boletim Analítico:** 2022/05832

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

ID Colheita: 2204733 Ponto de Amostragem: HVO Solo 32

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,6 %	±6%	
pH	LNEC E203:1967	5,8 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,036 mS/cm	±27,4%	
Fração de solo >75µm (1)	APa022	97,1 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	3,70 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	20,8 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,319 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,3 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	11,9 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	5,50 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	6,2 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	8,67 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,259 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,010 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	7,0 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,411 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	11,0 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	12,7 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Pagina: 1 de 3

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05832

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204736 Ponto de Amostragem: HVO Solo 35

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05833

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	96,7 %	±6%	
pH	LNEC E203:1967	4,8 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,030 mS/cm	±29,7%	
Fração de solo >75µm (1)	APa022	96,5 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	0,94 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	6,45 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,074 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)		
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	3,6 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	0,89 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	1,6 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	3,10 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,194 mg/kg Cr VI (b.s.)	±20,6%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,011 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	2,4 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,172 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	3,57 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	3,6 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
II GII 3-II CPLAULU CPUNIUU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05833

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo **Boletim Analítico:** 2022/05834

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

ID Colheita: 2204737 Ponto de Amostragem: HVO Solo 36

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	95,5 %	±6%	
pH	LNEC E203:1967	6,0 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,046 mS/cm	±24,7%	
Fração de solo >75µm (1)	APa022	96,6 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,78 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	32,3 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,371 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,0 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	12,3 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	5,01 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	6,7 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	9,93 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,227 mg/kg Cr VI (b.s.)	±20,5%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,016 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	9,9 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,393 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	12,8 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	13,3 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
II GII 3-II CPLAULU CPUNIUU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05834

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05835

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines ID Colheita: 2204740 Ponto de Amostragem: HVO Solo 39

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinações laboratoriais							
Determinação	Método	Resultado	Incerteza		٧L		
Matéria seca	APa048-19 (2019-10-16)	96,4 %	±6%				
рН	LNEC E203:1967	5,3 Escala de Sorënsen	±0,1				
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,036 mS/cm	±27,2%				
Fração de solo >75µm (1)	APa022	97,2 %					
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)			40		
Arsénio (4)(1)	S-METAXHB1	0,92 mg/kg As (b.s.)	±20%		18		
Bário (4)(1)	S-METAXHB1	14,3 mg/kg Ba (b.s.)	±20%		670		
Berílio (4)(1)	S-METAXHB1	0,098 mg/kg Be (b.s.)	±20%		8		
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)					
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)			1,9		
Chumbo (4)(1)	S-METAXHB1	3,8 mg/kg Pb (b.s.)	±20%		120		
Cobalto (4)(1)	S-METAXHB1	0,85 mg/kg Co (b.s.)	±20%		80		
Cobre (4)(1)	S-METAXHB1	1,9 mg/kg Cu (b.s.)	±20%		230		
Crómio (4)(1)	S-METAXHB1	3,83 mg/kg Cr (b.s.)	±20%		160		
Crómio hexavalente (4)(1)	S-CR6-IC	0,159 mg/kg Cr VI (b.s.)	±21,0%		8		
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)			3,9		
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)			40		
Níquel (4)(1)	S-METAXHB1	3,8 mg/kg Ni (b.s.)	±20%		270		
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)			40		
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)			5,5		
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)			3,3		
Urânio (4)(1)	S-METMSHB3	0,158 mg/kg U (b.s.)	±20%		33		
Vanádio (4)(1)	S-METAXHB1	3,70 mg/kg V (b.s.)	±20%		86		
Zinco (4)(1)	S-METAXHB1	4,4 mg/kg Zn (b.s.)	±20%		340		
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)			0,32		
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)			34		
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)			1,1		
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)			6,4		
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)					
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)					
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)			26		
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)			1,6		
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			21		
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,15		
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)			0,67		
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)			0,3		
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96		
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,1		
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			12		
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6		

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,027 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,020 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 -,
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
(+)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05835

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

 ${\sf Em \ todos \ os \ resultados \ expressos \ na \ forma \ "<X" \ ou \ "\le X", \ "X" \ \'e \ o \ Limite \ de \ Quantificação \ (LQ) \ do \ m\'etodo \ analítico.}$

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204741 Ponto de Amostragem: HVO Solo 40

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05836

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	94,4 %	±6%	
pH	LNEC E203:1967	5,6 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,046 mS/cm	±24,7%	
Fração de solo >75µm (1)	APa022	96,5 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,16 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	43,5 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,348 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,5 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	11,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	3,38 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	5,8 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	10,3 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,264 mg/kg Cr VI (b.s.)	±20,4%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,016 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,55 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	9,1 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,355 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	10,8 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	22,9 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05836

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

ID Colheita:

Boletim Definitivo

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines 2204742 Ponto de Amostragem: HVO Ref 1

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05837

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022 Conclusão da Análise: 8 novembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	96,8 %	±6%	
рН	LNEC E203:1967	4,8 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,025 mS/cm	±33,2%	
Fração de solo >75µm (1)	APa022	97,4 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	<0,50 mg/kg As (b.s.)		 18
Bário (4)(1)	S-METAXHB1	1,52 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	<0,010 mg/kg Be (b.s.)		 8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)		
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	1,2 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	<0,20 mg/kg Co (b.s.)		 80
Cobre (4)(1)	S-METAXHB1	<1,0 mg/kg Cu (b.s.)		 230
Crómio (4)(1)	S-METAXHB1	<0,50 mg/kg Cr (b.s.)		 160
Crómio hexavalente (4)(1)	S-CR6-IC	<0,060 mg/kg Cr VI (b.s.)		 8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)		 3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)		 40
Níquel (4)(1)	S-METAXHB1	<1,0 mg/kg Ni (b.s.)		 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	<0,100 mg/kg U (b.s.)		 33
Vanádio (4)(1)	S-METAXHB1	0,56 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	<3,0 mg/kg Zn (b.s.)		 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1) S-PAHGMS05		<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1) S-OCPECD01		<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

Boletim Analítico: 2022/05837 Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

Tipo Amostra:

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Solos

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

PETROGAL - Refinaria de Sines

Versão: 1.0

Requisitante:

ID Colheita: 2204743 Ponto de Amostragem: HVO Ref 2

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

2022/05838

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Conclusão da Análise: 8 novembro 2022 Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022

Determinação	Método	Resultado	Incerteza	 ٧L
Matéria seca	APa048-19 (2019-10-16)	96,1 %	±6%	
pH	LNEC E203:1967	5,5 Escala de Sorënsen	±0,1	
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,034 mS/cm	±28,2%	
Fração de solo >75µm (1)	APa022	94,2 %		
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)		 40
Arsénio (4)(1)	S-METAXHB1	2,74 mg/kg As (b.s.)	±20%	 18
Bário (4)(1)	S-METAXHB1	31,5 mg/kg Ba (b.s.)	±20%	 670
Berílio (4)(1)	S-METAXHB1	0,308 mg/kg Be (b.s.)	±20%	 8
Boro (4)(1)	S-METAXHB2	2,1 mg/kg B (b.s.)	±20%	
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)		 1,9
Chumbo (4)(1)	S-METAXHB1	11,3 mg/kg Pb (b.s.)	±20%	 120
Cobalto (4)(1)	S-METAXHB1	3,53 mg/kg Co (b.s.)	±20%	 80
Cobre (4)(1)	S-METAXHB1	5,3 mg/kg Cu (b.s.)	±20%	 230
Crómio (4)(1)	S-METAXHB1	10,5 mg/kg Cr (b.s.)	±20%	 160
Crómio hexavalente (4)(1)	S-CR6-IC	0,173 mg/kg Cr VI (b.s.)	±20,8%	 8
Mercúrio (4)(1)	S-HG-AFSHB	0,026 mg/kg Hg (b.s.)	±20%	 3,9
Molibdénio (4)(1)	S-METAXHB1	0,42 mg/kg Mo (b.s.)	±20%	 40
Níquel (4)(1)	S-METAXHB1	7,5 mg/kg Ni (b.s.)	±20%	 270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)		 40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)		 5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)		 3,3
Urânio (4)(1)	S-METMSHB3	0,377 mg/kg U (b.s.)	±20%	 33
Vanádio (4)(1)	S-METAXHB1	10,6 mg/kg V (b.s.)	±20%	 86
Zinco (4)(1)	S-METAXHB1	19,0 mg/kg Zn (b.s.)	±20%	 340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		 0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		 1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)		 6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)		
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)		
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)		 26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)		 1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)		 0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Benzo(a)pireno (4)(1)	S-PAHGMS05	<0,0050 mg/kg (b.s.)		 0,3
Benzo(b)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Benzo(k)fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,96
Criseno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Dibenzo(a,h,)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,011 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
Fenol (4)(1)	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
2-clorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
Pentaclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
cis-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04	<0,010 mg/kg (b.s.)		
Acetona (4)(1)	S-VOCGMS07	<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07	<0,50 mg/kg (b.s.)		 70
4,4-DDT (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1) S-OCPECD01		<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
TIGHTS-HEDIACION EDUNIAU (4)(1)	0 00. 20201	5,5 10 mg/ng (b.5.)		

LQA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05838

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022
 O Responsável do Laboratório
 Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura.
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05839

Tipo Amostra: Solos Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Caracterização de Solos - Fábrica HVO

Apartado 15 7520-952 Sines

Versão: 1.0

ID Colheita: 2204744 Ponto de Amostragem: HVO Ref 3

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (ISBN-0-7778-4056-1) (3) Método de Amostragem:

Amostragem por: LQA - Ambiente, Lda. Data da Amostragem: 28 setembro 2022

Conclusão da Análise: 8 novembro 2022 Recepção: 29 setembro 2022 Início da Análise: 29 setembro 2022

Determinação	Método	Resultado	Incerteza		٧L
Matéria seca	APa048-19 (2019-10-16)	96,2 %	±6%		
рН	LNEC E203:1967	5,3 Escala de Sorënsen	±0,1		
Conductividade, 25°C (4)(1)	S-CON2-ELE	0,026 mS/cm	±32,4%		
Fração de solo >75µm (1)	APa022	97,5 %			
Antimónio (4)(1)	S-METAXHB1	<0,50 mg/kg Sb (b.s.)			40
Arsénio (4)(1)	S-METAXHB1	1,08 mg/kg As (b.s.)	±20%		18
Bário (4)(1)	S-METAXHB1	11,7 mg/kg Ba (b.s.)	±20%		670
Berílio (4)(1)	S-METAXHB1	0,094 mg/kg Be (b.s.)	±20%		8
Boro (4)(1)	S-METAXHB2	<1,0 mg/kg B (b.s.)			
Cádmio (4)(1)	S-METAXHB1	<0,40 mg/kg Cd (b.s.)			1,9
Chumbo (4)(1)	S-METAXHB1	4,5 mg/kg Pb (b.s.)	±20%		120
Cobalto (4)(1)	S-METAXHB1	0,99 mg/kg Co (b.s.)	±20%		80
Cobre (4)(1)	S-METAXHB1	1,7 mg/kg Cu (b.s.)	±20%		230
Crómio (4)(1)	S-METAXHB1	3,42 mg/kg Cr (b.s.)	±20%		160
Crómio hexavalente (4)(1)	S-CR6-IC	0,184 mg/kg Cr VI (b.s.)	±20,7%		8
Mercúrio (4)(1)	S-HG-AFSHB	<0,010 mg/kg Hg (b.s.)			3,9
Molibdénio (4)(1)	S-METAXHB1	<0,40 mg/kg Mo (b.s.)			40
Níquel (4)(1)	S-METAXHB1	2,4 mg/kg Ni (b.s.)	±20%		270
Prata (4)(1)	S-METAXHB1	<0,50 mg/kg Ag (b.s.)			40
Selénio (4)(1)	S-METMSHB1	<1,00 mg/kg Se (b.s.)			5,5
Tálio (4)(1)	S-METAXHB1	<0,50 mg/kg Ta (b.s.)			3,3
Urânio (4)(1)	S-METMSHB3	0,177 mg/kg U (b.s.)	±20%		33
Vanádio (4)(1)	S-METAXHB1	3,93 mg/kg V (b.s.)	±20%		86
Zinco (4)(1)	S-METAXHB1	5,3 mg/kg Zn (b.s.)	±20%		340
Benzeno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)			0,32
Estireno (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)			34
Etilbenzeno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)			1,1
Tolueno (4)(1)	S-VPHGMS01	<0,10 mg/kg (b.s.)			6,4
m,p-xileno (4)(1)	S-VPHGMS01	<0,020 mg/kg (b.s.)			
o-xileno (4)(1)	S-VPHGMS01	<0,010 mg/kg (b.s.)			
Xilenos (4)(1)(7)	S-VPHGMS01	<0,030 mg/kg (b.s.)			26
Éter terc-butilmetílico (MTBE) (4)(1)	S-VPHGMS01	<0,050 mg/kg (b.s.)			1,6
Acenafteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			21
Acenaftileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,15
Antraceno (4)(1)	S-PAHGMS05	<0,0040 mg/kg (b.s.)			0,67
Benzo(a)antraceno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			0,96
Benzo(ghi)perileno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6
Benzo(a)pireno (4)(1) S-PAHGMS05		<0,0050 mg/kg (b.s.)			0,3
Benzo(b)fluoranteno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)			0,96
Benzo(k)fluoranteno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)			0,96
Criseno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)			9,6
Dibenzo(a,h,)antraceno (4)(1) S-PAHGMS05		<0,010 mg/kg (b.s.)			0,1
Fenantreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			12
Fluoranteno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)			9,6

Pagina: 1 de 3

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza	 VL
Fluoreno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 62
Indeno(1,2,3-cd)pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 0,76
Naftaleno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 9,6
Pireno (4)(1)	S-PAHGMS05	<0,010 mg/kg (b.s.)		 96
1-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
2-metilnaftaleno (4)(1)	S-PIGMS03	<0,050 mg/kg (b.s.)		 30
1,1,1,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,087
1,1,1-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 6,1
1,1,2,2-tetracloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1,2-tricloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,05
1,1-dicloroetano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
1,1-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,064
1,2-dibromoetano (4)(1)	S-VOCGMS07	<0,0080 mg/kg (b.s.)		 0,05
1,2-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 1,2
1,2-dicloroetano (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 0,05
1,2-dicloropropano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,16
1,2,4-triclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 3,2
1,3-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 9,6
1,4-diclorobenzeno (4)(1)	S-VOCGMS07	<0,005 mg/kg (b.s.)		 0,2
Bromodiclorometano ((4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 1,5
Bromofórmio (4)(1)	S-VOCGMS07	<0,040 mg/kg (b.s.)		 0,61
Bromometano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 0,05
cis-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,9
cis-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Cloreto de Vinilo (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,032
Clorobenzeno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 2,4
Clorofórmio (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,47
Dibromoclorometano (4)(1)	S-VOCGMS07	<0,020 mg/kg (b.s.)		 2,3
Diclorodifluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 16
Diclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,6
Tetraclorometano (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,21
Tetracloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 1,9
trans-1,2-dicloroeteno (4)(1)	S-VOCGMS07	<0,0030 mg/kg (b.s.)		 1,3
trans-1,3-dicloropropeno (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		
Tricloroeteno (4)(1)	S-VOCGMS07	<0,010 mg/kg (b.s.)		 0,55
Triclorofluormetano (4)(1)	S-VOCGMS07	<0,050 mg/kg (b.s.)		 4
	S-CLPGMS01	<0,040 mg/kg (b.s.)		 9,4
Fenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 3,1
2-clorofenol (4)(1) 2,4,5-triclorofenol (4)(1)	S-CLPGMS01	<0,010 mg/kg (b.s.)		 9,1
****	S-CLPGMS01	<0,010 mg/kg (b.s.)		 2,1
2,4,6-triclorofenol (4)(1)	S-CLPGMS01	<0,0050 mg/kg (b.s.)		 2,9
Pentaclorofenol (4)(1)	S-OCPECD01	<0,0050 mg/kg (b.s.)		 0,66
Hexaclorobenzeno (HCB) (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,031
Hexaclorobutadieno (HCBD) (4)(1)	S-OCPECD04			 0,031
cis-clordano (4)(1)		<0,010 mg/kg (b.s.)		
trans-clordano (4)(1)	S-OCPECD04 S-VOCGMS07	<0,010 mg/kg (b.s.)		 16
Acetona (4)(1)		<1,0 mg/kg (b.s.)		 16
Butanona (MEK) (4)(1)	S-VOCGMS07 S-OCPECD01	<0,50 mg/kg (b.s.) <0,010 mg/kg (b.s.)		 70 1 <i>4</i>
4,4-DDT (4)(1)				 1,4
Aldrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,088
Dieldrina (4)(1) S-OCPECD01		<0,010 mg/kg (b.s.)		 0,088
Endrina (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,04
cis-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
trans-heptacloro epóxido (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		
Metoxicloro (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 1,6

LOA - Ambiente

Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2022/05839

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza	 VL
1,4-dioxano (4)(1)	S-VOCGMS07	<5,0 mg/kg (b.s.)		 1,8
Hexacloroetano (4)(1)	S-OCPECD01	<0,010 mg/kg (b.s.)		 0,21
gama-HCH (4)(1)	S-OCPECD01	<0,0100 mg/kg (b.s.)		 0,056
Bifenilospoliclorados (PCB) (4)(1)	S-PCBGMS05	<0,0210 mg/kg (b.s.)		 1,1
Hidrocarbonetos de Petróleo C5 - C10 (sem BTEX) (4)(1)(7)	S-VPHGMS01	<8,80 mg/kg (b.s.)		 55
Hidrocarbonetos de Petróleo C10-C16 (4)(1)	S-TPHFID01	<5,0 mg/kg (b.s.)		 230
Hidrocarbonetos de Petróleo C16-C35 (4)(1)	S-TPHFID01	<10 mg/kg (b.s.)		 1700
Hdrocarbonetos de Petróleo C35-C40 (4)(1)(7)	S-TPHFID01	<5,0 mg/kg (b.s.)		

Observações:

VL - Valores de Referência estabelecidos no Guia Técnico da Agência Portuguesa do Ambiente - Solos Contaminados - Revisão 3 - Setembro 2022 - Tabela D, com utilização de água subterrânea, uso industrial/comercial, solo superficial com textura classificada como grosseira.

O Valor de Referência do metilnaftaleno é aplicável tanto ao 1-metilnaftaleno como ao 2-metilnaftaleno, sendo que se ambos forem detectados, o somatório da concentração dos dois não deverá exceder o valor fixado.

Bifenilos Policlorados (PCB) - analisados os 7 congéneros:

PCB 28 (2,4,4'- triclorobifenilo), PCB 52 (2,2',5,5'- tetraclorobifenilo), PCB 101 (2,2',4,5,5'- pentaclorobifenilo), PCB 118 (2,3',4,4',5'- pentaclorobifenilo), PCB 138 (2,2',3,4,4',5'- hexaclorobifenilo), PCB 153 (2,2',4,4',5,5'- hexaclorobifenilo), PCB 180 (2,2',3,4,4',5,5'- hexaclorobifenilo).

Apreciação:

Todos os resultados cumprem com os Valores de Referência expressos no documento legal aplicável .

V. N. de Gaia, 22 de dezembro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avallação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinacão analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

<u>Anexo 2</u>: Log´s das sondagens e piezómetros adicionais instalados na zona HVO (PZ-BH1; PZ-BH3; PZ-BH-4; PZ-BH6 e PZ-BH9)

GEOTECHNICAL SURVEY

Client:

BOREHOLE BH1

Job Number

29422

Page 1 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 10/8/2022

Final Date	Water Level	Dip	System	Coordinates		Elevation	Driller	Logged By
16/8/2022		90°	PT-TM06 (ETRS89)	M= -59119.897	P= -190362.300	Z= 41.543	Tiago Comba	Paulo Correia

					, , co i totor : 10000218		11.010	nago com			
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I N G (ISRM) 2 F5F4F3F2	% RECOVER' % R.Q.D.	1st Phase (15cm) 2nd Phase (90cm) Phase (90cm) 10 Blows (Nspt)	TESTS	D E P T H
<u> </u>			F	(R) 4 (1) (R) 4	Crushed stone (gabbro-diorite).		1 1 1 1	1 2 2 3 3 3	1 1 1 1 1 1		+
1-		1.50			Bright orange, clayey fine to medium sand, with small pebbles, and tiny layers of sandy clayed silt.			73	3		1-
3-		3.00			Whitish grey, medium dense clayey silty sand with blackened organic thin layers.			47	(30 cm)		2-
5-	C o r e D r i I 8 6	4.50	PQ		Whitish and bright yellow, medium dense silty sand, with some small pebbles.			70	(30 cm)		4-
7-	m m T 2	7.05 7.50						\$3 \$0	(30 cm) 24	(1)	7-
9-		9.00			Whitish, very dense medium and coarse silty sand, with scattared rounded quartz small pebbles.			53	(23 cm) 17 60		9-

Remarks: Instalation of piezometer with 19.5m depht.

Legend : (1) - UNDISTURBED SAMPLE

Rua D. Nuno Alvares Pereira, nº 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Móvel: (+351) 963035577 E-mail: mail@geocontrole.pt This report can only be reproduced full and partialy with express autorization from Geocontrole.

Drill Rig

Geo-032 AVSDrill 850

Initial Date

GEOTECHNICAL SURVEY

Client:

Final Depth (m)

BOREHOLE BH1

Job Number

29422

HVO SINES - GEOTECHNICAL SURVEY

Page 2 of 2

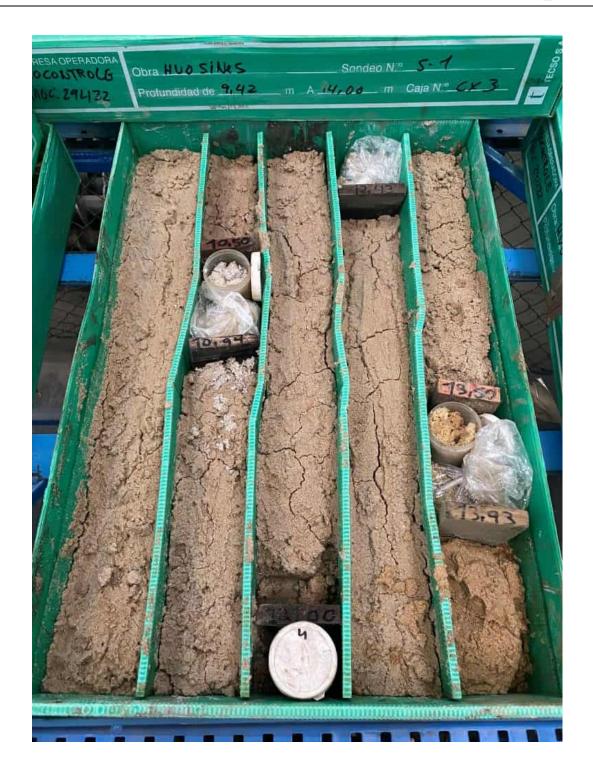
10/8/2022	Geo-032 AVSDrill 850	19.9					2 of 2
Final Date	Water Level	Dip	System	Coordinates	Elevation	Driller	Logged By
16/8/2022		90°	PT-TM06 (ETRS89)	M= -59119.897 P= -190362.300	Z= 41.543	Tiago Comba	Paulo Correia

	. 0, 0,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		******	nago oom		10 0011010	-
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U U R I N G (ISRM)	% RECOVERY % R.Q.D. 20 40 60 80	S.P.T. 1st Phase (16cm) 2nd Phase (26cm) 10 BlOWS (Nspt) 10 20 30 40 50	TESTS	D E P T H
112-	С	12.00			Whitish, very dense medium and coarse silty sand, with scattared rounded quartz small pebbles.			56 60	(2\$ cm) 60 (2\$ cm)		11-
14	o r e D r i I I 866 m m T 2	15.00 16.50 18.00	PQ		Brownish to yellowish very dense medium silty sand, with scattared rounded some quartz small pebbles.			47 47 57	(2\$ crh) 60 (2\$ crh) 60 (2\$ crh) 60 (2\$ crh) 21 60		15 17 18 19
20		19.90			Whitish to greyish, very dense medium fine silty sand.				60		20
	19.9m- End of Borehole (25 orh)										

Remarks: Instalation of piezometer with 19.5m depht.

Rua D. Nuno Alvares Pereira, nº 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Móvel: (+351) 963035577 E-mail: mail@geocontrole.pt This report can only be reproduced full and partialy with express autorization from Geocontrole.

TESTEMONY OF BOREHOLE BH1



TESTEMONY OF BOREHOLE BH1

TESTEMONY OF BOREHOLE BH1

TESTEMONY OF BOREHOLE BH1

TESTEMONY OF BOREHOLE BH1

Client:

BOREHOLE BH2

Job Number

29422

Page

Job: **HVO SINES - GEOTECHNICAL SURVEY**

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 16/8/2022 19.88

1 of 2 Final Date Dip Elevation Water Level Coordinates Logged By System Driller PT-TM06 (ETRS89) M= -59064.028 P= -190383.025 18/8/2022 Z= 41.830 Paulo Correia 90° 2.00m Tiago Comba

									· · · · · ·	· · · · · ·		10 0011014	
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H	SYMBOLOGY	MATERIAL DESCRIPTION	(IS	W E A T H E R I N G SRM)	F R A C C T U R I N G (ISRM)	% RECO	.D.	S.P.T. 1st Phase (16cm) 2nd Phase (16cm) n° Blows (Nspt) 10 20 30 40 50	TESTS	D E P T H
			F	refrédering (et et	Crushed stone (gabbro-diorite).								\Box
1-					Bright orange, clayey silty fine sand, with some small pebbles.								1-
2-		1.50			Dark grey to brownish, fine to medium loose sand with some small pebbles.					80	3 7 (30 cm)		2-
3-	C o r	3.00		₩	Bright orange (with whitish thin layers), medium dense fine to medium silty clayey sand, with some small quartz pebbles.				53		4 17 (30 cm)		3-
5-	e D r i I I 8 6 m	5.50	PQ		Whitish, medium dense fine to medium silty sand, with some small quartz pebbles.				53	92	7 24 (30 cm)	(1)	5-
8	m T 2	7.50							40	70	15 42 (30 cm) 53 (30 cm) 58 (30 cm) 58		8-

Remarks:

Legend: (1) - UNDISTURBED SAMPLE

Client:

BOREHOLE BH2

Job Number

29422

Page 2 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 19.88 16/8/2022

Final Date	Water Level	Dip	System	Coordir	nates	Elevation	Driller	Logged By
18/8/2022	2.00m	90°	PT-TM06 (ETRS89)	M= -59064.028	P= -190383.025	Z= 41.830	Tiago Comba	Paulo Correia

D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I N G ((SRM))	% RECOVERY % R.Q.D. 20 40 60 80	S.P.T. 1st Phase (15cm) 2nd Phase (35cm) R Blows (Nspt) 10 20 30 40 50	TESTS	D E P T H
11-		10.50			Whitish, dense and very dense medium to coarse silty sand, with frequent small rounded quartz pebbles.			57	(28 cm) 60		11-
13-16-17-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	C o r e D r i I I 8 6 m m T 2	13.50	PQ		Brownish to yellowish and whitish, very dense fine to medium silty sand, sometimes consolidated (sandstone), with frequent small and medium rounded quartz pebbles.			47	(2\$ crh) 26 60 (2\$ crh) 27 crh) 27 crh) 28 60		13. 14. 15. 16. 17. 17.
18-		18.00		* * * * * * * * * * * * * * * * * * *				67	(13 cm)		18-
20-		19.50			Whitish and yellowish, very dense fine silty sand. 19.88m- End of Borehole			60	27 60 (23 cm)		20-

Remarks :

TESTEMONY OF BOREHOLE BH2

TESTEMONY OF BOREHOLE BH2

TESTEMONY OF BOREHOLE BH2

TESTEMONY OF BOREHOLE BH2

TESTEMONY OF BOREHOLE BH2

Client:

BOREHOLE BH3

Job Number

29422

Page 1 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 19.82 24/8/2022

Final Date	Water Level	Dip	System	Coordi	nates	Elevat	ion	Driller	Logged By
26/8/2022	2.75m	90°	PT-TM06 (ETRS89)	M= -58977.047	P= -190375.927	Z= 42	2.172	Tiago Comba	Paulo Correia

ᆫ		. 0, 0, 2		ᆜᆫ		, , , ccc111c11 . 1ccc1c1.	ـــالـــــــــــــــــــــــــــــــــ		nago oon			
	D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	(ISRM)	% RECOVER % R.Q.D.	1st Phase (15cm) 2nd Phase (10cm) In P Blows (Nspt)	TESTS	D E P T H
	-			F		Crushed stone (gabbro-diorite). Dark brown silty fine to medium sand.						
-	2-		1.50			Bright orange with light grey thin layers, medium dense silty clayey fine to medium sand.			33 53	3 14 (30 cm)	(1)	2-
	-	C o r e				Whitish to yellowish, medium dense silty fine sand.				(3\$\psi\$ cm)		4-
	5-	D r i l l 8 6 m m	6.00	P Q		Whitish to yellowish, very dense silty clayey fine to medium sand.			40	(27 cm) 60		5-
	7-	T 2								(3¢ cm)		7-
	8-		7.50			Light beije to yellowish, sometimes whitish, medium to dense silty medium to coarse sand, with small rounded quartz pebbles.			73	(30 cm)		8-
	0-		9.00		* * * * * * * *				73	(30 cm)		10-

Remarks :

Legend : (1) - UNDISTURBED SAMPLE

Client:

BOREHOLE BH3

Job Number

29422

Page 2 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 19.82 24/8/2022

Final Date	Water Level	Dip	System	Coordina	ates	Elevation	Driller	Logged By
26/8/2022	2.75m	90°	PT-TM06 (ETRS89)	M= -58977.047 F	P= -190375.927	Z= 42.172	Tiago Comba	Paulo Correia

											_
D E P T H	D R I L L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I N G ((SRM))	% RECOVERY % R.Q.D. 20 40 60 80	S.P.T. 1st Phase (15cm) 2nd Phase (35cm) 10 Blows (Nspt) 10 20 30 40 50	TESTS	D E P T H
11-		12.00			Light beije to yellowish, sometimes whitish, medium to dense silty medium to coarse sand, with small rounded quartz pebbles.			80	9 41 (30 cm) 45		11-
13				* * * * *	Orange, silty medium to coarse sand, with small rounded quartz pebbles.				(30 cm)		13-
14-	C o r e D r i	13.50			Whitish to light grey, dense and very dense, silty fine to medium			10	(30 cm)		14-
15-	8 6 m m	15.00	PQ	* * * * * * * * *	sand, with scattared small to medium rounded quartz pebbles.			67	(28 cm) 28		15-
17-	-	10.50			Bright orange and yellowish, silty/clayey fine sand.			87	(18 cm)		17-
18-		18.00		* * * * * * * * * * * * * * * * * * *	Light yellow to beige, very dense, medium to coarse sand, with small rounded quartz pebbles.			80	16 60 (18 cm)		18-
19-		19.50		* * * * * * * *	Light grey to whitish, very dense silty fine and medium to coarse sand, with small rounded quartz pebbles.			87	27 60		19-
20					19.82m- End of Borehole				(17 cm)		20-

Remarks :

TESTEMONY OF BOREHOLE BH3

TESTEMONY OF BOREHOLE BH3

TESTEMONY OF BOREHOLE BH3

TESTEMONY OF BOREHOLE BH3

TESTEMONY OF BOREHOLE BH3

Client:

BOREHOLE BH4

Job Number

Page

29422

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 25/7/2022 19.85

1 of 2 Final Date Water Level Dip Elevation Coordinates Logged By System Driller PT-TM06 (ETRS89) M= -59087.952 P= -190439.432 27/7/2022 Z= 40.772 Paulo Correia 90° Tiago Comba

	,,,				, , occoriosz i iocios			1012	riago comba ra	uio 0011010	
D E P T H	D R I L I N G	C O R E U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION		W E A T H E R I N G (ISRM)	F R A C T U U R I N G G (ISRM)	% RECOVERY S.P.T. 1st Phase (15cm) 2nd Phase (15cm) 8 R.Q.D. 9 Blows (Nspt) 20 40 60 80 10 20 30 40 50	TESTS	D E P T H
			т		Sandy top soil, greyish.	†					彐
2 ² 33 3 3 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6	Co	3.00	PQ	# #	Clayey fine sand, with organic roots. Bright yellow, dense silty medium to fine sand, with feldspar mineral and rare quartz granules.				73 11 36 (30 cm) 100 9 38 (30 cm) 100 44 (30 cm)	(1) 67897	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
83	T 2	9.00							(30 cm) 1001141		7-

Remarks: Installation of piezometer with 19.5m depth.

Legend : (1) - UNDISTURBED SAMPLE

Client:

BOREHOLE BH4

Job Number

29422

Page 2 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 25/7/2022 19.85

Final Date Water Level Dip Coordinates Elevation Logged By System Driller PT-TM06 (ETRS89) M= -59087.952 P= -190439.432 27/7/2022 Z= 40.772 Paulo Correia 90° Tiago Comba

					, , coccitotz : 100 tool			nago comba			-
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I N G ((ISRM))	% R.Q.D.	S.P.T. 1st Phase (15cm) 2nd Phase (35cm) Pi Blows (NSpt) 1.0 20 30 40 50	TESTS	D E P T H
112-		10.50			Light beige, dense and very dense silty, medium to coarse sand, with feldspar minerals and rounded small pebbles.			(2	18 60 7 cm) 22 60		11-
14-	o r e D r i I	13.50	P		Bright orange very dense, silty medium sand.			(2	23 60		14-
16-		18.00	Q		, , , , , , , , , , , , , , , , , , ,			37 (2	29 60 6 cm) 35 60 4 cm) 28 60		16-17-18-19-19-19-19-19-19-19-19-19-19-19-19-19-
20				······*·····	19.85m- End of Borehole			(2	(0 cm)		20

Remarks: Installation of piezometer with 19.5m depth.

TESTEMONY OF BOREHOLE BH4

TESTEMONY OF BOREHOLE BH4

TESTEMONY OF BOREHOLE BH4

TESTEMONY OF BOREHOLE BH4

TESTEMONY OF BOREHOLE BH4

Client:

System

Elevation

Driller

André Comba

BOREHOLE BH5

Job Number

29422

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 3/8/2022 19.89 Water Level

Dip

90°

Final Date

9/8/2022

Job: **HVO SINES - GEOTECHNICAL SURVEY**

Coordinates

PT-TM06 (ETRS89) M= -58920.384 | P= -190457.681 | Z= 42.092

Page 1 of 2 Logged By

Paulo Correia

	3/0/2				90 1 11100 (2111000) 101 = 30920.304 1 = 113	0401.001		42.092	Allule Coll		io Correia	
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H	SYMBOLOGY	MATERIAL DESCRIPTION	W	W E A T H E R I N G (ISRM)	F R A C T U R I N G (ISRM)	% RECOVER) % R.Q.D.	S.P.T. 1st Phase (15cm) 2nd Phase (90cm) n° Blows (Nspt) 10 20 30 40 50	TESTS	D E P T H
			Ţ	#:::::#	Light grey, sandy top soil with scattared organic roots.							\Box
2-		1.50	•		Brownish to bright orange, dense silty medium to fine sand, with rare small to medium quartz pebbles.				60	14 44 (30 cm)		1-
3-		3.00							63	10 37		3-
5-	C o r e D r i I I 8 6 m m	4.50 5.55 6.00	PQ		Whitish to light grey, dense medium to fine clayey silty sand.				70	(30 cm) 32 (30 cm) 50	(1)	5-
7-	T 2			* * *	Whitish to light grey, dense medium to fine clayey silty sand, wit frequent small quartz pebbles.	1				(3¢ cm)		7-
9-		9.00			Light beige, very dense silty to medium to coarse sand, with small to medium rounded quartz pebbles.				70	(30 cm) 54 (30 cm) (28 cm) (9-

Remarks: Installation of piezometer with 19.5m depth.

Legend : (1) - UNDISTURBED SAMPLE

Client:

BOREHOLE BH5

Job Number

29422

Page

HVO SINES - GEOTECHNICAL SURVEY

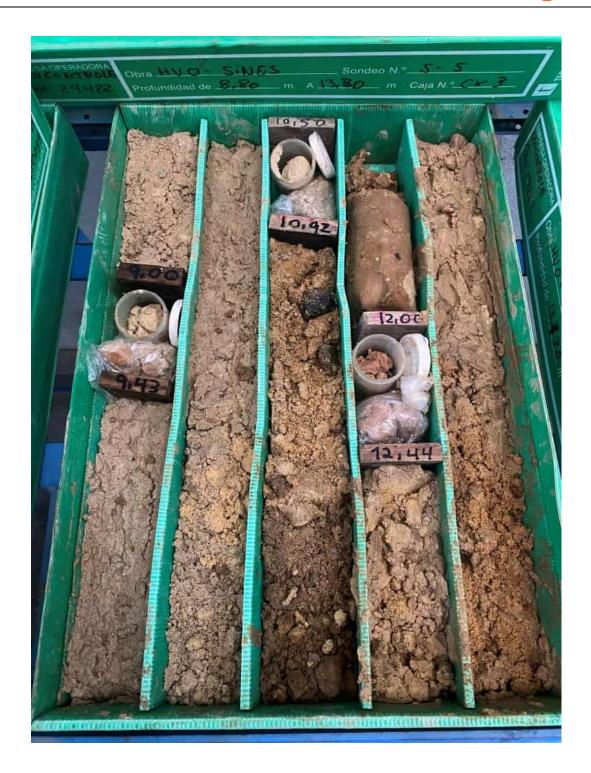
Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 3/8/2022 19.89

2 of 2 Final Date Elevation Water Level Dip Coordinates Logged By System Driller PT-TM06 (ETRS89) M= -58920.384 P= -190457.681 Z= 42.092 9/8/2022 Paulo Correia André Comba

	31012	VLL				101 - 38920.364 1 - 3	130407.00		42.092	Allule Coll		io Correia	-
D E P T H	D R I L L I N G	C O R E R U N	S T R A T I G R A P H	SYMBOLOGY		MATERIAL DESCRIPTION		W E A T H E R I N G (ISRM)	F R A C T U R I N G ((ISRM)) 2 F5 F4 F3 F	% R.Q.D.	1st Phase (15cm) 2nd Phase (30cm) In 0 Blows (Nspt)	TESTS	D E P T H
11-		10.50			small to medium ro	lense silty to medium to coarse sand, with ounded quartz pebbles.				60	26 60 (2† cm)		11-
13-	C o r e D r i I I	13.50	PQ	* * * * * * * * * * * * * * * * * * *	Bright orange, ven	y dense silty medium to coarse sand, with coarse rounded quartz pebbles.				70	(2\$ cm) 18 60 (2\$ cm) 28 60		13-14-15-15-1
16- 17-	8 6 m m T 2	16.50								60	(2\$ crh) 25 60 (2\$ crh)		16-
19-		19.50			Light beige to yello with frequent smal	owish, very dense silty medium to coarse sa I to coarse rounded quartz pebbles. 19.89m- End of Borehole	and,			70	(28 cm) 19 60		19-

Remarks: Installation of piezometer with 19.5m depth.

TESTEMONY OF BOREHOLE BH5



TESTEMONY OF BOREHOLE BH5

TESTEMONY OF BOREHOLE BH5

TESTEMONY OF BOREHOLE BH5

TESTEMONY OF BOREHOLE BH5

Drill Rig

Geo-032 AVSDrill 850

Water Level

Initial Date

28/7/2022

Final Date

GEOTECHNICAL SURVEY

Client:

System

Final Depth (m)

19 83

Dip

BOREHOLE BH6

Job Number

29422

HVO SINES - GEOTECHNICAL SURVEY

Page 1 of 2 Elevation Logged By Coordinates Driller

PT-TM06 (ETRS89) M= Paulo Correia 29/7/2022 -58971.574 P= -190529.410 42.175 900 7= Tiago Comba % RECOVERY 0 A C T U R E SYMBOLOGY MATERIAL DESCRIPTION TESTS R G % R.Q.D. N G n° Blows (Nspt) (m) (m) (ISRM) Ø H Y (ISRM) W5 W4 W3 W2 F5 F4 F3 F2 20 40 60 80 1020304050 Light grey medium to fine aeolic sand. # 1.50 Bright orange, dense silty medium sand. 2-2 3 3-3.00 (30 cm) 4 4е D 4.50 Bright orange and greenish, medium dense clayey, medium to fine sand with rare feldspar minerals, and rare small pebbles. 5-5 8 6 m 6 6 6.00 m 2 (30 cm) 7-7-7.50 ۵ Bright yellow, dense silty medium sand with rounded quartz 8-(1) 8 pebbles. (30 cm) 67898 ٠ ٥ 9 9 9.00 Bright orange to brownish, very dense silty, medium and coarse ٥ sand, with rare very large lithic pebbles. (29 cm)

Remarks: Installation of piezometer with 19.5m depth.

Legend: (1) - UNDISTURBED SAMPLE

Client:

BOREHOLE BH6

Job Number

Page

2 of 2

29422

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 28/7/2022 19.83

Final Date Elevation Water Level Dip Coordinates Logged By System Driller PT-TM06 (ETRS89) M= -58971.574 P= -190529.410 Z= 42.175 29/7/2022 Paulo Correia Tiago Comba

	23/1/		-		90 1 111100 (2111000) 101	20.4		ـــال			<u> </u>	riago Corriba		io Correia	
D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION			W E A T H E R I N G (ISRM		 	K K K K K K K K K K K K K K K K K K K	% R.Q.D.	S.P.T. 1st Phase (15cm) 2nd Phase (30cm) R0 Blows (Nspt) 0 20 30 40 50	TESTS	D E P T H
11. 12. 13. 14. 15.	Core Drill	12.00 13.50	PQ		Bright orange to brownish, very dense silty, medium and coarse sand, with rare very large lithic pebbles.							100	19 60 Cm) 16 60 Cm) 18 60 Cm) 30		11. 12. 13. 14. 15.
16	8 6 m m T 2	16.50			Bright orange to whitish very dense clayey to silty fine to coarse sand, with rounded medium pebbles.							(8	33 60 cm) 28 60		16
19-		19.50	J 1 ?		Greenish hard marly sandy silty, with shelly fragments.							100	26 60		19-
					19.83m- End of Borehole		\perp	\perp	\perp	ш	\perp		(((((((((((((((((((二二

Remarks: Installation of piezometer with 19.5m depth.

TESTEMONY OF BOREHOLE BH6

TESTEMONY OF BOREHOLE BH6

TESTEMONY OF BOREHOLE BH6

TESTEMONY OF BOREHOLE BH6

TESTEMONY OF BOREHOLE BH6

Data de Início

1/9/2022

PROSPECÇÃO GEOTÉCNICA

Entidade :

Obra:

SONDAGEM BH7

Processo

29422 Página

1 de 2

HVO SINES - GEOTECHNICAL SURVEY

Equipamento Prof. Final (m)

Geo-032 AVSDrill 850 Prof. Final (m)

19.77

Data de FimNivel FreáticoInclinaçãoSistemaCoordenadasCotaSondadorTécnico5/9/20221.95m90°PT-TM06 (ETRS89)M= -58857.535P= -190098.704Z= 42.490Aurélio RodriguesPaulo Correia

	JIJIZ	.022	ᆜᆫ	1.93111	30	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	030.70-	ــــــــــــــــــــــــــــــــــــــ	72.730	areno itourige	ies i au	io Correia	
P R O F U N D I D A D E (m)	F U R A Ç Ã O	M A N O B R A S	E S T R A T I G R A F I	SIMBOLOGIA		DESCRIÇÃO LITOLÓGICA	W	A L T E R A C Ä O (ISRM)	F R A C T U R A G Å O O ((ISRM)) F5 F4 F5 F2	% RECUP. % R.Q.D. 20 40 60 80	S.P.T. 1º Fase (15cm) 2º Fase (30cm) 2º Fase (Nspt) 10 20 30 40 50	ENSAIOS	P R O F U N D I D A D E (m)
-		0.50	F		Orange to brown, rock (gabro-diorite	silty sand with quartz pebbles and fragments of							
1-		1.50		0 — 0 0 — 0	Bright orange to ye	ellowish, dense clayey silty fine to medium I small to medium quartz pebbles.				20	9 36 (30 cm)		1-
3-		3.00		▼						47	11 43		3-
5-	8 6 m m	4.50	P		Yellowish to brown silty) fine to mediu	n and whitish, dense silty (sometimes clayey ım sand.				93	12 43 (30 cm)		5-
6-	a ç ã o	6.00	Q							€7	10 45		6-
7-		7.50								60	9	(1)	7-
8-					Yellowish (with gre	ey and orange thin layers), medium dense silty					(30 cm)		8-
9		9.00			and clayey silty fin	e to medium sand.				87	25 (30 cm)		9-

Observações :

Legenda : (1) - Amostra Intacta

Rua D. Nuno Alvares Pereira, nº 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Móvel: (+351) 963035577 E-mail: mail@geocontrole.pt
Sem ser para o fim a que se destina este relatório de ensaio só pode ser reproduzido na integra ou parcialmente com autorização expressa da Geocontrole.

Equipamento

Geo-032 AVSDrill 850

Data de Início

1/9/2022

PROSPECÇÃO GEOTÉCNICA

Entidade:

SONDAGEM BH7

Processo

29422

Página 2 de 2

Obra :

1 05,4.

Prof. Final (m)

19.77

Data de Fim Nivel Freático Inclinação Sistema Coordenadas Cota Sondador Técnico

5/9/2022 1.95m 90° PT-TM06 (ETRS89) M= -58857.535 P= -190098.704 Z= 42.490 Aurélio Rodrigues Paulo Correia

	5/9/2	2022	ᆜᆫ	1.95m	90°	P1-1M06 (E1K289) V =	-08807.030	P= -190098.7	04		42.490	Aui	ello Roar	igues	Pau	lo Correia	
P R O F U N D I D A D E (m)	F U R A Ç Ã O	M A N O B R A S	E S T R A T I G R A F I A	SIMBOLOGIA		DESCRIÇÃO LITOLÓGIO	CA			A L T E R A C Ã O SRM)	FRAACTURAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	M) 3 F2	% RECUP. % R.Q.D.	1º Fa	se (15cm) 2* Fase (30cm) n° Pancadas (Nspt)	ENSAIOS	P R O F U N D I D A D E (m)
=					Yellowish (with gre	ey and orange thin layers e to medium sand.), medium de	nse silty									
11-		12.00											73	(30 cm			11-
13-		12.33				tish, dense and very dens ayers of silty clayey fine s		um to					13	(21 cm	60		13-
14	8	13.50		*									1	(20 cm	9 60		14
15-	m m R o t a	15.00	P Q	* * * * * * *									1	00 1! (24 cm	60		15-
16-	ç ã o	16 50		* * * *										(24 CI			16-
17-		16.50		* * * * * *	Whitish and light g with frequent small	rey, very dense silty med I rounded quartz pebbles	lium and fine	sand,					53	(22 cm	60		17-
18-		18.00		* * * * * * *									9	(14 cm	29 60		18-
19-		19.50		* * * * * * * * * * * * * * * * * * *									67	(14 CII	37		19-
20				*		10.77m Fire de O-	ndogo						67	(10 04	60		
20-						19.77m- Fim de So	nuagem		Ш	Ш				(12 cm	7		20-

Observações :

Rua D. Nuno Alvares Pereira, nº 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Móvel: (+351) 963035577 E-mail: mail@geocontrole.pt
Sem ser para o firm a que se destina este relatório de ensaio só pode ser reproduzido na integra ou parcialmente com autorização expressa da Geocontrole.

TESTEMONY OF BOREHOLE BH7

TESTEMONY OF BOREHOLE BH7

TESTEMONY OF BOREHOLE BH7

TESTEMONY OF BOREHOLE BH7

TESTEMONY OF BOREHOLE BH7

Drill Rig

Geo-032 AVSDrill 850

Initial Date

6/9/2022

GEOTECHNICAL SURVEY

Client:

BOREHOLE BH8

Job Number

29422

Job :

19.88

HVO SINES - GEOTECHNICAL SURVEY

Page **1** of **2**

Final Date	Water Level	Dip	System	Coordinates	Elevation	Driller	Logged By
8/9/2022	2.90m	90°	PT-TM06 (ETRS89)	M= -58819.551 P= -190094.385	Z= 42.560	Aurélio Rodrigues	Paulo Correia

oxdot		0/5/2	UZZ	ᆜᆫ	2.30111	30	101 - 1000 (211000) 101 - 300 19.33	1 1130034.30	كاك	42	.300 ^	ulello Rou	igues	Гас	ilo Correia	
D E P T H	1)	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY		MATERIAL DESCRIPTION		W E A T H E R I N G (ISRM)		F R A C T U R I N G (ISRM)	% RECOVER % R.Q.D.	1st Pi	S.P.T. ase (15cm) 2nd Phase (30cm) n° Blows (Nspt)	TESTS	D E P T H
	1		0.30	F	50505	Dark brown, silty f	fine to medium sand, with quartz peb					67	1020	304030		Ħ
-	1-		1.50		o	Bright orange to you medium sand, with	ellowish, very dense clayey silty fine h frequent small rounded quartz pebl	to bles.				25	12	60		1-
3	3-		3.00		₩							73	(30 cm	42		3-
-	1 1	C o r e D r i I I	4.50	PQ		Light grey to yellov fine to medium sar	wish and whitish, dense silty and cla nd.	yey silty				67	(30 cm	40	(1)	5-
-	3	8 6 m	6.00			Bright orange to re	edish, silty clayey fine and very fine	sand.								6-
-	-	m , T 2	7.50			Light grey to brown sand.	nish and whitish, dense, silty mediur	n to fine				Ţo.	97 7 (30 cm			7-
	9-		9.00			Yellowish to greyis silty medium to fin small rounded qua	sh, medium dense and dense, silty a ne sand and coarse sand layers with artz pebbles.	nd clayey frequent				73	(30 cm	32		8-
10	- - - D-											67	(30 cm)		

Remarks :

Legend : (1) - UNDISTURBED SAMPLE

GEOTECHNICAL SURVEY

Client:

BOREHOLE BH8

Job Number

29422

Page 2 of 2

HVO SINES - GEOTECHNICAL SURVEY

6/9/2022	Geo-032 AVSDrill 850	19.88
Initial Date	Drill Rig	Final Depth (m)

Elevation Coordinates Logged By Final Date Water Level Dip System Driller PT-TM06 (ETRS89) M= -58819.551 | P= -190094.385 | Z= 42.560 | Aurélio Rodrigues Paulo Correia 8/9/2022 2.90m 90°

D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I I N G (ISRM)	% RECOVERY % R.Q.D. 20 40 60 80	S.P.T. 1st Phase (15cm) 2nd Phase (35cm) 10 Blows (Nspt) 10 20 30 40 50	TESTS	D E P T H
11. 12. 13. 15. 16.	Core Drill 86 mm T	12.00 13.50 15.00 18.00	PQ		Yellowish to greyish, medium dense and dense, silty and clayey silty medium to fine sand and coarse sand layers with frequent small rounded quartz pebbles. Whitish and light grey, very dense silty medium to fine sand and some coarse sand layers with frequent small rounded quartz pebbles.		(ISRM)	20 40 60 80 67 73 73 80 80	14 39 (3¢ cm) 14 54 (3¢ cm) 15 60 (27 cm)		12: 13: 14: 15: 16: 17: 18:
19-		19.50		* * ** * *				87	(2\$ cm) 24 60		19-

Remarks :

TESTEMONY OF BOREHOLE BH8

TESTEMONY OF BOREHOLE BH8

TESTEMONY OF BOREHOLE BH8

TESTEMONY OF BOREHOLE BH8

TESTEMONY OF BOREHOLE BH8

TESTEMONY OF BOREHOLE BH8

GEOTECHNICAL SURVEY

Client:

BOREHOLE BH9

Job Number

29422

Page 1 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 19.92 9/9/2022

Final Date	Water Level	Dip	System	Coordin	nates	Elevation	Driller	Logged By
14/9/2022		90°	PT-TM06 (ETRS89)	M= -58816.301	P= -190138.965	Z= 42.52	Aurélio Rodrigues	Paulo Correia

┖		1,0,1				100 100 100 100 100 100 100 100 100 100		72.02 710				
	D E P T H	D R I L I N G Ø	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E E R I N G (ISRM)	F R A C T U R I N G (ISRM)	% RECOVERY % R.Q.D.	S.P.T. 1st Phase (15cm) 2nd Phase (95cm) Riows (Nspt) 10 20 30 40 50	TESTS	D E P T H
	-		0.30	F	\$7.57.5	Dark brown, silty sand with rocky fragments.						甘
-	1-		1.50			Yellowish, dense silty very clayey fine to medium sand.			47	7 32		1-
-	4	C o r e D r i I	3.00			Light grey to whitish (with yellowish and bright orange thin layers), dense silty to silty clayey sand.			52	(30 cm) 6 36 (30 cm)	(1)	3-
-	-	İ		P Q		Yellowish to orange, silty fine to very fine sand.				(30 cm)		
-	0-	8 6 m m T 2	7.50			Bright orange and brown redish, dense silty and silty clayey fine to medium sand.			40 40	7 32 (30 cm) 36 (30 cm) 50		6-

Remarks: Installation of piezometer with 19.5m depth.

Legend : (1) - UNDISTURBED SAMPLE

GEOTECHNICAL SURVEY

Client:

BOREHOLE BH9

Job Number

29422

Page 2 of 2

HVO SINES - GEOTECHNICAL SURVEY

Initial Date Drill Rig Final Depth (m) Geo-032 AVSDrill 850 19.92 9/9/2022

Final Date	Water Level	Dip	System	Coordi	ordinates Elevation Driller		Logged By	
14/9/2022		90°	PT-TM06 (ETRS89)	M= -58816.301	P= -190138.965	Z= 42.52	Aurélio Rodrigues	Paulo Correia

D E P T H	D R I L I N G	C O R E R U N	S T R A T I G R A P H Y	SYMBOLOGY	MATERIAL DESCRIPTION	W E A T H E R I N G (ISRM)	F R A C T U R I N G (ISRM)	% RECOVER % R.Q.D.	1st Phase (15cm) 2nd Phase (19cm) Phase (19cm) 10 Blows (Nspt)	TESTS	D E P T H
1					Bright orange and brown redish, dense silty and silty clayey fine to medium sand.						1
11-		10.50		* * * * * * * *	to medium sand.			53	(3¢ cm)		11-
12		12.00		* * *	Yellowish, dense and very dense silty medium to coarse sand, with scatterd small rounded quartz pebbles.			60	15 60		12
13-		12.50			with scatterd small rounded quarz peoples.				(29 cm)		13-
14	C o r e	13.50						50	(28 cm)		14
15-	D r i I	15.00	P Q		Light grey to whitish/yellowish, very dense, silty clayey fine sand.			9			15
	8		_	. — .	Whitish silty coarse sand with dark brown sandy silty clay.						
16-	6 m m T	16.50		* * * *				1	(30 cm)		16-
17-	-								(27 cm)		17-
18-		18.00			Whitish and light grey to yellowish, very dense silty fine to medium sand, with some small and medium rounded quartz pebbles and rare small rocky fragments.			87	15 60		18-
19-									(29 cm)		19-
20		19.50		* * *	4000 5 1 20 1 1			1	18 60		20-
					19.92m- End of Borehole				(27 cm)		

Remarks: Installation of piezometer with 19.5m depth.

TESTEMONY OF BOREHOLE BH9

TESTEMONY OF BOREHOLE BH9

TESTEMONY OF BOREHOLE BH9

TESTEMONY OF BOREHOLE BH9

TESTEMONY OF BOREHOLE BH9

PROSPECÇÃO GEOTÉCNICA

Entidade:

SONDAGEM **BH10**

Processo

29422

Página 1 de 2

HVO SINES - GEOTECHNICAL SURVEY

Data de Início Prof. Final (m) Equipamento Geo-032 AVSDrill 850 16/9/2022

Data de Fim	Nivel Freático	Inclinação	Sistema	Coordenadas	Cota	Sondador	Técnico	
20/9/2022	3.90m	90°	PT-TM06 (ETRS89)	M= -58838.479 P= -190160.17	Z= 42.590	Aurélio Rodrigues	Paulo Correia	

	20131	LULL	ᆜᆫ	3.90111		11 - 1301	00.177	خالـ		72.000	 CIIO I	oun	juco	1 40	ilo Correia	•
P R O F U N D I D A D E (m)	F U R A Ç Ā O	M A N O B R A S	E S T R A T I G R A F I	SIMBOLOGIA		DESCRIÇÃO LITOLÓGICA	W	A L T E R A Ç Ã O (ISR	M)	F R A C T U R A C Ç Ã A G (ISR	% RE	Q.D.	de Pa	P.T. (15cm) P.Fase (30cm) n° ancadas lspt)	ENSAIOS	P R O F U N D I D A D E (m)
1		0.30	F	52525	Brownish to bright	orange, clayey silty sand, with pebbles and						67				
1-		1.50		0	small rocky fragme Yellowish with ligh dense clayey silty pebbles in the top.	nt grey and bright orangen thun layers, medium sand with some small to medium quartz					50		(30 cm)	3		1-
3-		3.00		· · · · · · · · · · · ·							40		8	47	,	3
4-	8 6 m m	4.50		=	Light grey whitish and medium dense	(with yellowish and orange thin layers), dense e (on the bottom) silty and clayey silty sand.					€	0	(3¢ cm)	27		4-
6-	o t a ç ã o	6.00	PQ									93	(30 cm)	28		6-
8-		7.50			Brown redish and medium dense and sand.	yellowish (with rare light grey thin layers), d dense (in the bottom) silty and clayey silty						93	(30 cm)	26	(1)	8-
10-		9.00										80 67	(30 cm)	26		10-

Observações :

Legenda : (1) - Amostra Intacta

Rua D. Nuno Alvares Pereira, n° 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Móvel: (+351) 963035577 E-mail: mail@geocontrole.pt Sem ser para o fim a que se destina este relatório de ensaio só pode ser reproduzido na integra ou parcialmente com autorização expressa da Geocontrole.

PROSPECÇÃO GEOTÉCNICA

Entidade :

SONDAGEM
BH10

Processo

29422

Página 2 de 2

Obra:

HVO SINES - GEOTECHNICAL SURVEY

16/9/2022	Geo-032 AVSDrill 850	19.9
Data de Inicio	Equipamento	Prof. Final (m)

Data de Fim	Nivel Freático	Inclinação	Sistema	Coordenadas		Cota	Sondador	Técnico
20/9/2022	3.90m	90°	PT-TM06 (ETRS89)	M= -58838.479	P= -190160.177	Z= 42.590	Aurélio Rodrigues	Paulo Correia

P R
S N D I D A D E
(m)
111-
13-
14-
16-
17-
18-
19-
20 20

Observações :

Rua D. Nuno Alvares Pereira, nº 4, Parque Oriente Bloco 4 2699-501 Bobadela LRS Portugal Tel.: (+351) 219958000 Fax: (+351) 219958001 Mövel: (+351) 963035577 E-mail: mail@geocontrole.pt
Sem ser para o fim a que se destina este relatório de ensaio só pode ser reproduzido na integra ou parcialmente com autorização expressa da Geocontrole.

TESTEMONY OF BOREHOLE BH10

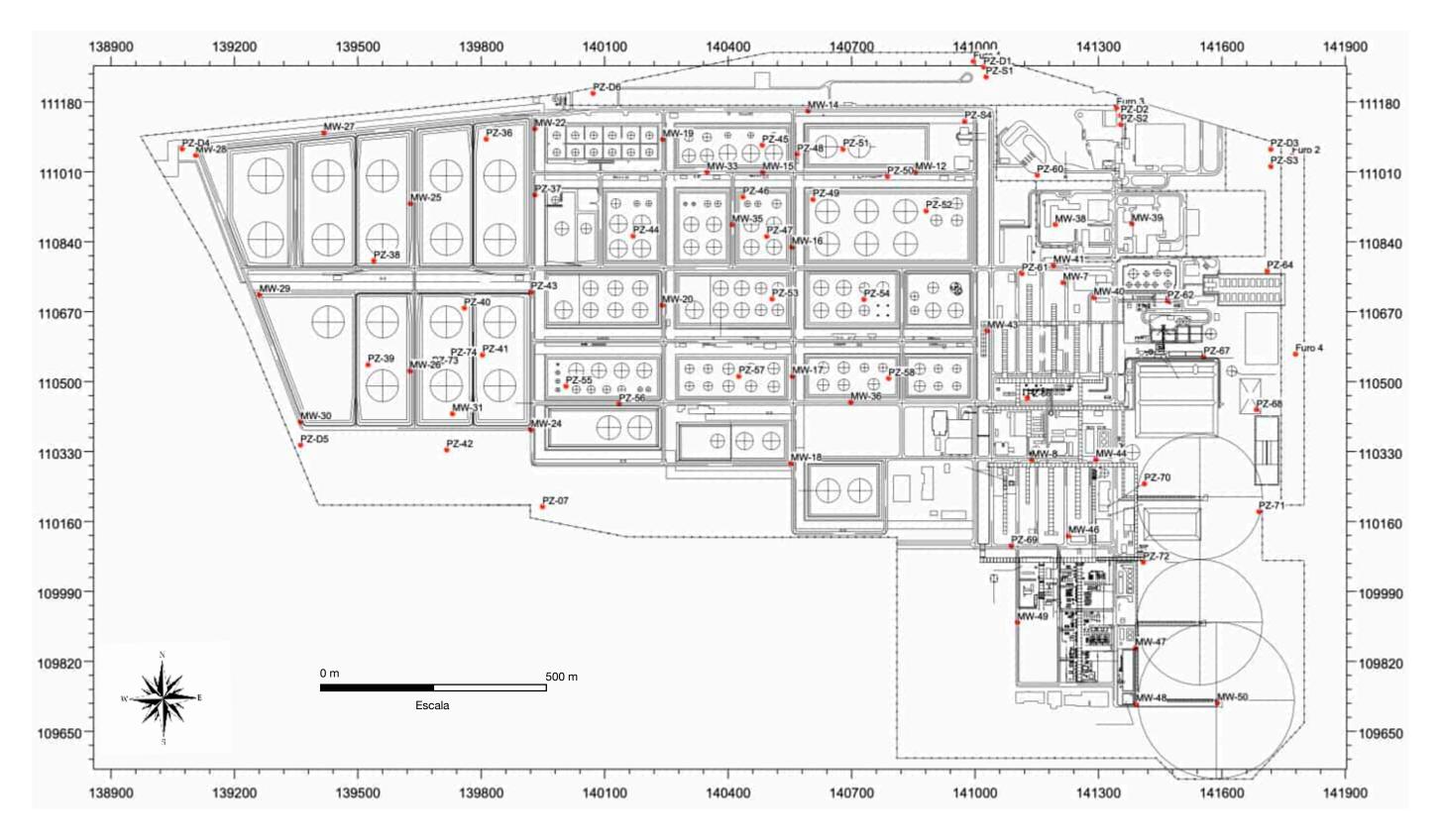
TESTEMONY OF BOREHOLE BH10

TESTEMONY OF BOREHOLE BH10

TESTEMONY OF BOREHOLE BH10

TESTEMONY OF BOREHOLE BH10

TESTEMONY OF BOREHOLE BH10



<u>Anexo 3</u>: Posição relativa e absoluta dos piezómetros - Refinaria de Sines - Envolvente do HVO

Relatório Base

Mapa com a Localização dos Piezómetros e Furos de Captação da Refinaria de Sines - GALP

Anexo 4: Boletins analíticos - 2a Campanha semestral de 2021 - Refinaria de Sines;

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

......

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

2021/03811

ARH

ID Colheita:2104376Ponto de Amostragem:Piezómetro PZD1

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,26 mg/l O2	±6%
рН	ISO 10523:2008	7,3 a 22,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	121,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	5,40 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	715 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	121 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	39,8 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	234 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,062 mg/l C6H5OH	±20,7%
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	1,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	30,2 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	2,8 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	4,25 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	2,05 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

2021/03811

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 µg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	3,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	2,6 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,45 μg/l	±43%
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	14370
, , ,	W-VOCGMS01	<1,0 μg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l <0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)			
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03811

Determinações laboratoriais			
Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
rans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
rans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Friclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 μg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
ndeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Febuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,058 μg/l	±30%

Boletim Analítico: 2021/03811

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 μg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Cálcio (4)(1)	W-METAXFX1	39,2 mg/l Ca	±19%
Magnésio (4)(1)	W-METAXFX1	29,4 mg/l Mg	±19%
Sódio (4)(1)	W-METAXFX1	79,9 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	4,17 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03811 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: 2021/03812

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ARH

ID Colheita:2104377Ponto de Amostragem:Piezómetro PZD2

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	6,65 mg/l O2	±6%
рН	ISO 10523:2008	6,9 a 21,10 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	169,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,1 °C	±3%
Nível Piezómetrico (1)	HPa002-15	7,78 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	655 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	27,7 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	3,06 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	86,7 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	289 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,021 mg/l C6H5OH	±25,5%
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 μg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 μg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 μg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Co	
Cobre (4)(1)	W-METAXFX1	1,4 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,2 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	<1,0 μg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cr	
Ferro (4)(1)	W-METAXFX1	2,8 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	2,8 μg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	11,0 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	<0,50 μg/l Mn	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 μg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03812

.	**************************************	- · ·	
Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 μg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
Vanádio (4)(1)	W-METAXFX1	2,0 μg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	1,8 μg/l V	±19%
Zinco (4)(1)	W-METAXFX1	<2,0 μg/l Zn	
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
	W-VOCGMS01	<0,20 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<1,0 μg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01		
1,1,1,2-tetracloroetano (4)(1)(2)		<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
	W-VOCGMS01	<0,10 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l <1,0 µg/l	
Cloroetano (4)(1)(2)	WY-VOOGIVISO I	<1,0 μg/l <0,10 μg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais			
Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
rans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
rans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Fricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
ndeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
_inurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Febuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,044 μg/l	±30%

Boletim Analítico: 2021/03812

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação N	létodo	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,084 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	
Cálcio (4)(1)	W-METAXFX1	63,7 mg/l Ca	±19%
Magnésio (4)(1)	W-METAXFX1	36,1 mg/l Mg	±19%
Sódio (4)(1)	W-METAXFX1	31,1 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	3,77 mg/l K	±19%

Observações:

Os Limites de Quantificação para o método W-AEOGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03812 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Definitivo

Versão: 1.0

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03813

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Monitorização Rede Piezométrica de Sines - Periféricos Designação da Amostra: Apartado 15 7520-952 Sines

ARH

ID Colheita: 2104378 Piezómetro PZD3 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 09 novembro 2021

10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,21 mg/l O2	±6%
рН	ISO 10523:2008	6,9 a 19,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	143,4 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	9,04 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1303 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	247 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	0,30 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	192 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	300 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	<0,005 mg/l C6H5OH	
Alumínio (4)(1)	W-METAXFX1	32 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	252 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	19,2 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	<0,50 μg/l Mn	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	6,4 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	5,4 μg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03813

Determinações laboratoriais			
Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 μg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
/anádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	2,4 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Γolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	0,48 μg/l	±43%
Tricloroetileno (4)(1)(2)	W-VOCGMS01	0,48 μg/l	±43%
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)			
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03813

Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	0,48 µg/l	±43%
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	0,48 μg/l	±43%
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 μg/l	
(7)		0,010 µg/i	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	0,049 μg/l	±30%
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
* * * * * *	W-PESLMS02		

Boletim Analítico: 2021/03813

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
álcio (4)(1)	W-METAXFX1	117 mg/l Ca	±19%
flagnésio (4)(1)	W-METAXFX1	46,4 mg/l Mg	±19%
ódio (4)(1)	W-METAXFX1	131 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	6,47 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03813 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Requisitante:

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ARH

ID Colheita: 2104379
Ponto de Amostragem: Piezómetro PZD4

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,84 mg/l O2	±6%
рН	ISO 10523:2008	7,4 a 21,30 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	141,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,83 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	767 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	155 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	0,70 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	42,6 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	188 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	<0,005 mg/l C6H5OH	
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	1,4 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	10,1 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	1,85 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	<0,50 µg/l Mn	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 μg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 μg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l V	
Zinco (4)(1)	W-METAXFX1	<2,0 μg/l Zn	
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
n,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
p-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
	W-VOCGMS01	<0,20 µg/l	
Eter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<1,0 μg/l	
sopropilbenzeno (4)(1)(2)	W-VOCGMS01		
1,1,1,2-tetracloroetano (4)(1)(2)		<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 μg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 μg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 μg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 μg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 μg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
rerbutilazina (4)(1)(2)	W-I EGEINIOUZ	-0,000 μg/ι	

Boletim Analítico: 2021/03814

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
didrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
cálcio (4)(1)	W-METAXFX1	27,1 mg/l Ca	±19%
flagnésio (4)(1)	W-METAXFX1	23,1 mg/l Mg	±19%
ódio (4)(1)	W-METAXFX1	109 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	5,48 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03814 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

The state of the s

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ARH

2021/03815

ID Colheita:2104380Ponto de Amostragem:Piezómetro PZD5

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	6,62 mg/l O2	±6%
pH	ISO 10523:2008	7,8 a 19,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	158,1 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	1,18 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	590 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	96,3 mg/l CI	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	18,6 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	26,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	160 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,011 mg/l C6H5OH	±36,2%
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	45,1 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	21,4 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	<0,50 μg/l Mn	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03815

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 μg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 μg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 μg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l V	
Zinco (4)(1)	W-METAXFX1	2,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
	W-VOCGMS01	<0,20 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<1,0 μg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	· ·	
1,1,1,2-tetracloroetano (4)(1)(2)		<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W VOCCMEN1	<1,0 μg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	-1,0 μg/ι	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação I	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 μg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 μg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 μg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 μg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 μg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 μg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 μg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 μg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
100000110201 (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-FE3LW3U2		

Boletim Analítico: 2021/03815

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
idrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
cálcio (4)(1)	W-METAXFX1	19,3 mg/l Ca	±19%
flagnésio (4)(1)	W-METAXFX1	14,0 mg/l Mg	±19%
ódio (4)(1)	W-METAXFX1	89,8 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	2,83 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Versão: 1.0 Boletim Definitivo 2021/03815 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: 2021/03816

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ARH

ID Colheita:2104381Ponto de Amostragem:Piezómetro PZD6

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	5,09 mg/l O2	±6%
pH	ISO 10523:2008	7,5 a 23,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	161,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	23,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,20 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	724 µS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	148 mg/l CI	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	1,56 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	24,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	184 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,197 mg/l C6H5OH	±20,1%
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	4,9 µg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	3,4 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	433 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	2,7 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	60,2 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	0,95 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Γitânio (4)(1)	W-METAXFX2	<1,0 µg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
/anádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
/anádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	10,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	5,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
n,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
p-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
	W-VOCGMS01	<0,20 μg/l	
Eter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<1,0 μg/l	
sopropilbenzeno (4)(1)(2)	W-VOCGMS01	· ·	
1,1,1,2-tetracloroetano (4)(1)(2)		<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03816

Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 μg/l	
	W-PAHGMS05	<0,010 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Criseno (4)(1)			
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05 W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)		<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 μg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 μg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2) MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
MCPA (4)(1)(2) Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS07	<0,030 μg/l	
Oxadiazão (4)(1)(2)			
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	

Boletim Analítico: 2021/03816

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
idrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
cálcio (4)(1)	W-METAXFX1	28,2 mg/l Ca	±19%
flagnésio (4)(1)	W-METAXFX1	17,4 mg/l Mg	±19%
ódio (4)(1)	W-METAXFX1	106 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	5,42 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Versão: 1.0 Boletim Definitivo 2021/03816 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: 2021/03817

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ARH

ID Colheita: 2104382
Ponto de Amostragem: Piezómetro PZD7

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 09 novembro 2021

Recepção: 10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	7,84 mg/l O2	±6%
рН	ISO 10523:2008	7,7 a 21,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	165,9 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,21 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	922 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	190 mg/l CI	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	0,205 mg/l F	±15%
Nitratos (4)(1)(2)	W-NO3-SPC	9,88 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	46,0 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	234 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,018 mg/l C6H5OH	±27,2%
Alumínio (4)(1)	W-METAXFX1	<10 µg/l Al	
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 μg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	<1,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 μg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	3,3 µg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	<0,50 μg/l Mn	
Manganês dissolvido (4)(1)(2)	W-METAXFL1	<0,50 μg/l Mn	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03817

Determinação	Método	Resultado	Incerteza
			incerteza
Selénio (4)(1)	W-METMSFX1 W-METAXFL1	<1,0 μg/l Se <10 μg/l Se	
Selénio dissolvido (4)(1)(2)		· · ·	
Titânio (4)(1)	W-METAXEL2	<1,0 μg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	3,0 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 μg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
	W-VOCGMS01	<0,10 µg/l	
1,3-diclorobenzeno (4)(1)(2) 1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
	W-VOCGMS01	<0,10 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2,2-dicloropropano (4)(1)(2)			
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Boletim Analítico: 2021/03817

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Clorometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
	W-PAHGMS05	<0,020 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(ghi)perileno (4)(1)			
Benzo(a)pireno (4)(1)	W-PAHGMS05 W-PAHGMS05	<0,0200 μg/l	
Benzo(b)fluoranteno (4)(1)		<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
(7) PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
, , , , , , , , , , , , , , , , , , , ,	W-OCPECD01	<0,0050 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	-0,000 µg/l <0,010 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Alacloro (4)(1)(2)			
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	

Boletim Analítico: 2021/03817

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
didrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
idrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
cálcio (4)(1)	W-METAXFX1	35,8 mg/l Ca	±19%
flagnésio (4)(1)	W-METAXFX1	35,5 mg/l Mg	±19%
ódio (4)(1)	W-METAXFX1	126 mg/l Na	±19%
Potássio (4)(1)	W-METAXFX1	5,75 mg/l K	±19%

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03817 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: 2021/03818 Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104372 Piezómetro PZ64 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 09 novembro 2021

10 novembro 2021 Início da Análise: 10 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,44 mg/l O2	±6%
pH	ISO 10523:2008	5,1 a 20,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	285,0 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	7,33 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	439 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	34,0 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	4,17 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	134 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	26,0 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,048 mg/l C6H5OH	±21,2%
Alumínio (4)(1)	W-METAXFX1	835 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	69 μg/l Al	±19%
Arsénio (4)(1)	W-METMSFX1	1,7 µg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	6,3 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobalto (4)(1)	W-METAXFX1	6,6 µg/l Co	±19%
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	3,4 µg/l Co	±19%
Cobre (4)(1)	W-METAXFX1	6,2 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,8 µg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	837 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	4,2 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	144 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	122 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,010 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	19,1 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	16,0 µg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03818

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	4,6 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	25,6 µg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	8,0 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 μg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
	W-VOCGMS01	<0,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l <0,20 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)		· •	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
AIGGIOTO (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação M	étodo	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 μg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,032 μg/l	±30%
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0 Boletim Definitivo 2021/03818 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico: 2021/03825 Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104364

Piezómetro MW19 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	6,77 mg/l O2	±6%
pH	ISO 10523:2008	6,0 a 23,63 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	172,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	23,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,65 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	525 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	77,6 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	11,5 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	72,7 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	44,1 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,200 mg/l C6H5OH	±20,1%
Alumínio (4)(1)	W-METAXFX1	1080 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	7,3 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	3,0 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,4 µg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	812 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	2,3 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	18,4 µg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	1,50 µg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,011 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03825

Determinações laboratoriais			
Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	7,4 μg/l Se	±19%
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Se	
Titânio (4)(1)	W-METAXFX2	20,5 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	3,0 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	47,3 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	25,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<0,20 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01		
Isopropilbenzeno (4)(1)(2)		<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
(7) PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 μg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
	W-PCBGMS05	<0,00120 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 μg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l <0,000950 µg/l	
PCB 180 (4)(1)(2)			
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Dindo (4)(1)(2)	Determinação	Método	Resultado	Incerteza
Dunilo (k())(2)	Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
M-PESLMS02	Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
W-PESLMS02	Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (q(1)(2) W-PESLIMS04 0,030 µg/l	Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Mecoprope (ν(1)(2) W-PESLMS04 <0.030 μg/l	Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
APESLMS02	MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Application	Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Tebuconazo (4)(1)(2)	Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Perbuliazina (4)(1)(2)	Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
2-98 tillerbutilazina (λ(1)(2) W-PESLMS02 0.298 tg/l ±30% 2-0.20 tg/l 2-0	Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
A-Amino-4-Clorofenol (4(1)(2) W-AEOGMS01 <0,020 μg/l	Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Detifendis (4/1)(2)	Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,298 μg/l	±30%
Variable	2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
W-DEA	Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,020 µg/l	
Hidrocarbonetos Alifáticos > C10-C12 (4)(1)(2)	Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2) W-TPHFID08 <95.0 µg/l Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) W-TPHFID08 <55.0 µg/l Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <95.0 µg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1) W-TPHFID08 <30 µg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <30 µg/l Hidrocarbonetos Totais >C36-C40 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais >C36-C35 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais >C36-C35 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 µg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 µg/l	Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos > C16-C21 (4)(1)(2)	Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos > C21-C30 (4)(1)(2) W-TPHFID08 <10 μg/l	Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos > C30-C35 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alífáticos > C35-C40 (4)(1)(2)	Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
-lidrocarbonetos Alifáticos Totais (C10C40) (4)(1) W-TPHFID08	Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
7) Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos > C10-C12 (4)(1)(2) W-TPHFID08 <5,0 μg/l	Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos > C16-C21 (4)(1)(2) W-TPHFID08 <20 μg/l Hidrocarbonetos Aromáticos > C21-C30 (4)(1)(2) W-TPHFID08 <20 μg/l Hidrocarbonetos Aromáticos > C30-C35 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2) W-TPHFID08 <20 μg/l	Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95.0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <50 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 \10 μg/l	Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 \10 μg/l Hidrocarbonet	Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
1)(7) Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 µg/l	Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
	Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
-lidrocarbonetos Totais (C10-C40) (4)(1)(7) W-TPHFID08 <95,0 μg/l	Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
	Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

Observações:

Os Limites de Quantificação para o método W-AEOGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

> Versão: 1.0 Boletim Definitivo

2021/03825 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico: 2021/03826 Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104366 Piezómetro MW28 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,84 mg/l O2	±6%
рН	ISO 10523:2008	7,1 a 22,0 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	118,6 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,0 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,11 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1258 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	271 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	0,270 mg/l F	±15%
Nitratos (4)(1)(2)	W-NO3-SPC	1,54 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	67,7 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	293 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,007 mg/l C6H5OH	±51,5%
Alumínio (4)(1)	W-METAXFX1	1270 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	1,1 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	0,40 µg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	34,8 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	4,8 µg/l Co	±19%
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	7,4 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	7,4 µg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	2,2 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	1180 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,00 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	2050 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	152 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,013 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	5,0 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03826

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais			
Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	43,6 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	4,0 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	1,0 µg/l V	±19%
Zinco (4)(1)	W-METAXFX1	47,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	18,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
sopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
ndeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
(7) PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 μg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
	W-PCBGMS05	<0,000950 µg/l	
PCB 180 (4)(1)(2) PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2) PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00710 µg/l	
	W-PCBGM303 W-OCPECD01	<0,00730 μg/l <0,0050 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01		
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-PESLMS02	<0,010 µg/l <0,030 µg/l	
Alacloro (4)(1)(2)			
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,020 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

Observações:

Os Limites de Quantificação para o método W-AEOGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0 Boletim Definitivo 2021/03826 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Definitivo

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03827

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104369 Piezómetro MW31 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,20 mg/l O2	±6%
pH	ISO 10523:2008	6,6 a 21,5 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	162,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,5 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,24 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	848 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	178 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	12,2 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	48,1 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	123 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,038 mg/l C6H5OH	±21,8%
Alumínio (4)(1)	W-METAXFX1	287 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	2,7 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	222 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	108 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	0,80 µg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	4,1 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	2,3 µg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03827

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	1,3 μg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Se	
Titânio (4)(1)	W-METAXFX2	5,0 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	2,0 μg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	1,3 μg/l V	±19%
Zinco (4)(1)	W-METAXFX1	33,0 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	15,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
	W-VOCGMS01	<0,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01		
Tetracloroetileno (4)(1)(2)		<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobatadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
	W-PESLMS02	<0,030 μg/l	
Alacloro (4)(1)(2)	W-PESLMS04	<0,030 μg/l	
Bentazona (4)(1)(2)	VV-F EGLIVIGU4	<υ,υου μg/ι	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	0,042 µg/l	±30%
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
_inurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,227 μg/l	±30%
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

> Versão: 1.0 Boletim Definitivo

2021/03827 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Definitivo

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03828

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104370 Piezómetro PZ53 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,71 mg/l O2	±6%
рН	ISO 10523:2008	6,8 a 20,2 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	159,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	1,95 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1023 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	84,7 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	148 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	357 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	<0,005 mg/l C6H5OH	
Alumínio (4)(1)	W-METAXFX1	240 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 µg/l Al	
Arsénio (4)(1)	W-METMSFX1	3,7 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	19,3 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	2,8 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,4 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	1770 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	10,1 μg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	95,9 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	15,2 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	4,5 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03828

Versão: 1.0 Boletim Definitivo

Determinação I	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	4,2 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	4,8 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	324 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	121 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 μg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2) 1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
	W-VOCGMS01	<0,20 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)			
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCCMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 μg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 μg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
,	W-PESLMS04	<0,030 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03828

Determinações laboratoriais

Determinação	Método	Resultado	Incertez
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
ebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
erbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,020 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,250 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
lidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
didrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
didrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

Observações:

Os Limites de Quantificação para o método W-AEOGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

> Versão: 1.0 Boletim Definitivo

2021/03828 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Definitivo

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03829

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104371 Piezómetro PZ54 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,69 mg/l O2	±6%
рН	ISO 10523:2008	6,5 a 20,0 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	158,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,0 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,37 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	837 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	116 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	11,5 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	71,5 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	208 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	0,071 mg/l	±27,5%
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,032 mg/l C6H5OH	±22,5%
Alumínio (4)(1)	W-METAXFX1	155 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	3,7 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	4,0 µg/l Co	±19%
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	3,4 µg/l Co	±19%
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,8 µg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	322 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	6,1 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	96,0 µg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	77,1 µg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,020 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	3,0 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	2,3 µg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

2021/03829

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Boletim Analítico:

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 µg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	<1,0 µg/l Ti	
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	<1,0 µg/l V	
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	108 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	81,4 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2) 1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
	W-VOCGMS01	-0,20 μg/l 0,37 μg/l	±43%
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	· ·	14070
Tricloroetileno (4)(1)(2)		<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCCMS01	<0,20 µg/l	1420/
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	3,53 µg/l	±43%
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 μg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,000 pg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,010 µg/l	
	LOLINOOL	-0,000 μg/i	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03829

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
midaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
_inurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Febuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,110 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) 1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0 Boletim Definitivo 2021/03829 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03830

PETROGAL - Refinaria de Sines

Versão: 1.0

Apartado 15 7520-952 Sines

Requisitante:

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104373 Piezómetro PZ68 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	5,68 mg/l O2	±6%
pH	ISO 10523:2008	5,0 a 21,8 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	253,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,8 °C	±3%
Nível Piezómetrico (1)	HPa002-15	5,77 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1001 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	150 mg/l CI	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	1,36 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	278 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	16,7 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	2,23 mg/l C6H5OH	±20,0%
Alumínio (4)(1)	W-METAXFX1	1900 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	12 μg/l Al	±19%
Arsénio (4)(1)	W-METMSFX1	<1,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	4,3 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobalto (4)(1)	W-METAXFX1	5,8 μg/l Co	±19%
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	5,2 μg/l Co	±19%
Cobre (4)(1)	W-METAXFX1	7,4 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	2,0 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	2,2 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cr	
Ferro (4)(1)	W-METAXFX1	1210 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	5,8 μg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	31,4 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	28,3 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,109 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 μg/l Hg	
Níquel (4)(1)	W-METAXFX1	4,5 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	4,4 μg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 μg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03830

Versão: 1.0 Boletim Definitivo

Determinação !	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	1,1 μg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	15,3 μg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
Vanádio (4)(1)	W-METAXFX1	5,8 μg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l V	
Zinco (4)(1)	W-METAXFX1	23,0 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	21,6 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 μg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2) 1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
	W-VOCGMS01	<0,20 μg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	0,68 µg/l	±43%
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,00 μg/l <1,0 μg/l	14370
Isopropilbenzeno (4)(1)(2)			
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 μg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 μg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 μg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,000 µg/l	
	W-PESLMS02	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

MCPA (4)(1)(2) W-PESLMS04 <0,030 µgl Mecoprope (4)(1)(2) W-PESLMS04 <0,030 µgl Oxadiazão (4)(1)(2) W-PESLMS07 <0,030 µgl PEBLMS07 <0,030 µgl Tebucorazol (4)(1)(2) W-PESLMS02 <0,030 µgl PEBLMS02 <0,056 µgl ±30% Desetiterbutilazina (4)(1)(2) W-PESLMS02 <0,068 µgl ±30% Desetiterbutilazina (4)(1)(2) W-PESLMS02 <0,080 µgl ±30% Ozdifiendia (4)(1)(2) W-CLPLMS01 <0,080 µgl ±30% Ozdifiendia (4)(1)(2) W-AECGMS01 <0,080 µgl ±30% Vocilifendia (4)(1)(2) W-AECGMS01 <0,090 µgl ±50 µgl Hidrocarbonetos Alifáticos > C10-C12 (4)(1)(2) W-TPHFID08 <0,01 mgl ±50 µgl Hidrocarbonetos Alifáticos > C16-C21 (4)(1)(2) W-TPHFID08 <0 µgl ±10 µgl	Determinação	Método	Resultado	Incerteza
Diurilo (a)(1)(2)	Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
M-PESLMS02	Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
W-PESLMS02	Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2) MCPSLMS04 MCCPORPO (4)(1)(2) MCPSLMS04 MCCPORPO (4)(1)(2) MCPSLMS07 MCPAGUN(3) MCPSLMS02 MCPSL	Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Mecaprope (√(1)/2)	Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Metalaxii (isomeros) (4/1)(2) W-PESLMS02 <0,030 µg/l	MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Oxadiazão (4(1)(2) W-PESLMS07 <0,030 μg/f	Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Tebuconazo ((1)(1)(2)	Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Perbulilazina (N(Y)(2) W-PESLMS02 0.056 µg 230% 230% 230% 224mino-4-Clorofeno (N(Y)(2) W-PESLMS02 0.082 µg 230% 230% 240% 230% 240% 2	Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Desetliterbutilazina (4)(1)(2)	Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
2-Amino-4-Clorefenol (4)(1)(2) W-AEOGMS01	Terbutilazina (4)(1)(2)	W-PESLMS02	0,056 µg/l	±30%
Octifiendis (4)(1)(2) W-AEOGMS01 <0,020 µg/I	Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,082 µg/l	±30%
Nonlifenóis (λ(γ)(12)(γ)? Nonlifenóis (λ(γ)(12)(γ)? Nonlifenóis (λ(γ)(12)(γ)? Nonlifenóis (λ(γ)(12)(γ)? W-DEA V-DEA V-DEA V-DEA V-DEA V-PHFIDO8 S, 0, μg/I Hidrocarbonetos Allídicos > C10-C12 (4)(1)(2) W-TPHFIDO8 V-TPHFIDO8 V-	2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 μg/l	
Delatimina (5)(2) W-DEA 0,01 mg/l Hidrocarbonetos Alifáticos > C10-C12 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Alifáticos > C16-C21 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Alifáticos > C16-C21 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Alifáticos > C21-C30 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Alifáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Alifáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Alifáticos > C35-C40 (4)(1)(2) W-TPHFID08 <95,0 µg/l Hidrocarbonetos Alifáticos > C10-C40 (4)(1)(2) W-TPHFID08 <5,0 µg/l Hidrocarbonetos Aromáticos > C10-C12 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Aromáticos > C10-C21 (4)(1)(2) W-TPHFID08 <20 µg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 µg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <30 µg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 <30 µg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 <20 µg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 <10 µg/l	Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,020 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2) W-TPHFID08	Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,380 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2) W-TPHFID08	Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos > C21-C30 (4)(1)(2) W-TPHFID08 < 20 μg/l Hidrocarbonetos Alifáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Alifáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 95,0 μg/l Hidrocarbonetos Alifáticos > C10-C12 (4)(1)(2) W-TPHFID08 < 95,0 μg/l Hidrocarbonetos Aromáticos > C12-C16 (4)(1)(2) W-TPHFID08 < 30 μg/l Hidrocarbonetos Aromáticos > C16-C21 (4)(1)(2) W-TPHFID08 < 20 μg/l Hidrocarbonetos Aromáticos > C21-C30 (4)(1)(2) W-TPHFID08 < 20 μg/l Hidrocarbonetos Aromáticos > C21-C30 (4)(1)(2) W-TPHFID08 < 20 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 95,0 μg/l Hidrocarbonetos Totais > C10-C40 (4) W-TPHFID08 < 95,0 μg/l Hidrocarbonetos Totais > C10-C40 (4) W-TPHFID08 < 30 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 < 30 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 < 20 μg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 < 20 μg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 < 20 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 20 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l	Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alífáticos >C30-C35 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2) W-TPHFID08 <50,0 μg/l Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2) W-TPHFID08 <30 μg/l Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2) W-TPHFID08 <20 μg/l Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2) W-TPHFID08 <20 μg/l Hidrocarbonetos Aromáticos >C35-C30 (4)(1)(2) W-TPHFID08 <20 μg/l Hidrocarbonetos Aromáticos >C35-C30 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <50,0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C35-C35 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C35-C35 (4)(1) W-TPHFID08 <410 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <410 μg/l	Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) W-TPHFID08	Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos > C10-C12 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos > C12-C16 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos > C16-C21 (4)(1)(2) W-TPHFID08	Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos > C21-C30 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C30-C35 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 < 10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C30-C35 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 < 10 μg/l	Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos > C30-C35 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos > C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95.0 μg/l Hidrocarbonetos Totais > C10-C12 (4)(1) W-TPHFID08 <50 μg/l Hidrocarbonetos Totais > C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais > C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais > C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais > C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais > C35-C40 (4)(1) W-TPHFID08 10 μg/l Hidrocarbonetos Totais > C30-C40 (4)(1) W-TPHFID08 10 μg/l Hidrocarbonetos Totais > C3	Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2) W-TPHFID08 <10 μg/l Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 10 μg/l Hi	Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) W-TPHFID08 <95,0 μg/l Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
(1)(7) Hidrocarbonetos Totais >C10-C12 (4)(1) W-TPHFID08 <5,0 μg/l Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1) W-TPHFID08 <30 μg/l Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1) W-TPHFID08 <20 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1) W-TPHFID08 <10 μg/l Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1) W-TPHFID08 <10 μg/l	Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
(A)	Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7) W-TPHFID08 <95,0 μg/l	Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
	Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

> Versão: 1.0 Boletim Definitivo

2021/03830 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Apartado 15 7520-952 Sines

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0

Boletim Analítico: 2021/03831

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104374 Piezómetro PZ71 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 10 novembro 2021

11 novembro 2021 Início da Análise: 11 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,84 mg/l O2	±6%
pH	ISO 10523:2008	5,3 a 21,5 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	203,0 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,5 °C	±3%
Nível Piezómetrico (1)	HPa002-15	8,02 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1075 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	37,8 mg/l NH4	±15%
Cloretos (4)(1)(2)	EN ISO 10304-1	106 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	<0,200 mg/l F	
Nitratos (4)(1)(2)	W-NO3-SPC	82,2 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	236 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	66,7 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	0,075 mg/l	±26,8%
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	<0,005 mg/l C6H5OH	
Alumínio (4)(1)	W-METAXFX1	207 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	81 μg/l Al	±19%
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	1,2 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	18,7 μg/l Co	±19%
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	18,4 μg/l Co	±19%
Cobre (4)(1)	W-METAXFX1	2,6 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,6 µg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	244 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	8,6 µg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	119 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	115 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,129 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,011 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	11,1 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	10,5 μg/l Ni	±19%
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

2021/03831

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	<1,0 μg/l Se	
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	1,6 µg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 μg/l Ti	
Vanádio (4)(1)	W-METAXFX1	1,8 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l V	
Zinco (4)(1)	W-METAXFX1	13,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	9,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	1,12 µg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 μg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	1,12 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
	W-VOCGMS01	<0,20 μg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	24,0 µg/l	±43%
Eter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	24,0 μg/l <1,0 μg/l	14370
Isopropilbenzeno (4)(1)(2)	W-PAHGMS05	<0,010 μg/l	
Acenafteno (4)(1)	W-PAHGMS05		
Acenaftileno (4)(1)		<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
(7) PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 μg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 μg/l	
	W-OCPECD01	<0,0050 μg/l	
Hexaclorobenzeno (HCR) (4)(1)(2)	W-OCPECD01	<0,000 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-PESLMS02	<0,010 μg/l <0,030 μg/l	
Alacloro (4)(1)(2)			
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03831

Determinações laboratoriais

Determinação	l létodo	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	0,124 µg/l	±30%
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	0,095 µg/l	±30%
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,044 µg/l	±30%
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 μg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,160 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

Observações:

Os Limites de Quantificação para o método W-AEOGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

> Versão: 1.0 Boletim Definitivo

2021/03831 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico: 2021/03832 Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH Designação da Amostra:

ID Colheita: 2104367 Piezómetro MW29 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 11 novembro 2021

12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,28 mg/l O2	±6%
рН	ISO 10523:2008	6,8 a 21,6 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	175,7 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	1,44 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	467 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	36,8 mg/l Cl	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	0,328 mg/l F	±15%
Nitratos (4)(1)(2)	W-NO3-SPC	7,88 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	39,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	140 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,050 mg/l C6H5OH	±21,1%
Alumínio (4)(1)	W-METAXFX1	443 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	1,2 µg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	3,9 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	2,8 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	482 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Fe	
Manganês (4)(1)	W-METAXFX1	21,0 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	1,00 μg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03832

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	1,4 µg/l Se	±19%
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	3,7 µg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	3,0 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	1,5 µg/l V	±19%
Zinco (4)(1)	W-METAXFX1	19,5 µg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	10,9 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2) 1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,70 μg/l	
	W-VOCGMS01	<0,20 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)			
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1) (7)	W-PAHGMS05	<0,370 µg/l	
PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Alacloro (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Bentazona (4)(1)(2)	W-PESLMS04	<0,030 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	0,068 μg/l	±30%
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	0,093 μg/l	±30%
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 μg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

Versão: 1.0 Boletim Definitivo 2021/03832 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Designação da Amostra:

2021/03833

Monitorização Rede Piezométrica de Sines - Aquífero Superior ARH

ID Colheita: 2104368

Piezómetro MW30 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 11 novembro 2021

12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 14 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,16 mg/l O2	±6%
рН	ISO 10523:2008	6,6 a 22,8 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	160,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,8 °C	±3%
Nível Piezómetrico (1)	HPa002-15	0,90 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	581 μS/cm	±17%
Azoto amoniacal (4)(2)	W-NH4-SPC	<0,050 mg/l NH4	
Cloretos (4)(1)(2)	EN ISO 10304-1	67,5 mg/l CI	±15%
Fluoretos (4)(1)(2)	EN ISO 10304-1	0,300 mg/l F	±15%
Nitratos (4)(1)(2)	W-NO3-SPC	31,8 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	28,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	96,3 mg/l HCO3	±12%
Cianetos (4)(1)(2)	W-CNT-PHO	<0,005 mg/l CN	
Sulfuretos (4)(1)(2)	W-H2S-PHO	<0,050 mg/l S	
Agentes Tensioactivos Aniónicos (4)(1)(2)	W-SURA-PHO	<0,020 mg/l	
Indice de Fenóis (4)(1)(2)	W-PHI-CFA	0,081 mg/l C6H5OH	±20,4%
Alumínio (4)(1)	W-METAXFX1	239 μg/l Al	±19%
Alumínio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Al	
Arsénio (4)(1)	W-METMSFX1	<1,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METMSFX1	1,3 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobalto (4)(1)	W-METAXFX1	<2,0 µg/l Co	
Cobalto dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Co	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Ferro (4)(1)	W-METAXFX1	189 μg/l Fe	±19%
Ferro dissolvido (4)(1)(2)	W-METAXFL1	75,6 μg/l Fe	±19%
Manganês (4)(1)	W-METAXFX1	12,7 μg/l Mn	±19%
Manganês dissolvido (4)(1)(2)	W-METAXFL1	0,90 µg/l Mn	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Prata Total (4)(1)	W-METAXFX1	<1,0 µg/l Ag	
Prata dissolvida (4)(1)(2)	W-METAXFL1	<1,0 µg/l Ag	

Boletim Analítico: 2021/03833

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
Selénio (4)(1)	W-METMSFX1	1,5 μg/l Se	±19%
Selénio dissolvido (4)(1)(2)	W-METAXFL1	<10 μg/l Se	
Titânio (4)(1)	W-METAXFX2	6,8 µg/l Ti	±19%
Titânio dissolvido (4)(1)(2)	W-METAXFL2	<1,0 µg/l Ti	
Vanádio (4)(1)	W-METAXFX1	1,3 µg/l V	±19%
Vanádio dissolvido (4)(1)(2)	W-METAXFL1	1,1 µg/l V	±19%
Zinco (4)(1)	W-METAXFX1	21,9 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	4,7 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<0,20 μg/l	
Eter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l <0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)			
Isopropilbenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Acenafteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Acenaftileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Antraceno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Benzo(a)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(ghi)perileno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Benzo(a)pireno (4)(1)	W-PAHGMS05	<0,0200 µg/l	
Benzo(b)fluoranteno (4)(1)	W-PAHGMS05	<0,010 μg/l	
Benzo(k)fluoranteno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Criseno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Dibenzo(a,h,)antraceno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Fluoranteno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Fluoreno (4)(1)	W-PAHGMS05	<0,020 µg/l	
Indeno(1,2,3-cd)pireno (4)(1)	W-PAHGMS05	<0,010 µg/l	
Naftaleno (4)(1)	W-PAHGMS05	<0,100 µg/l	
Fenantreno (4)(1)	W-PAHGMS05	<0,030 µg/l	
Pireno (4)(1)	W-PAHGMS05	<0,060 µg/l	
Hidrocarbonetos Aromáticos Polinucleares (4)(1)	W-PAHGMS05	<0,370 µg/l	
(7) PCB 101 (4)(1)(2)	W-PCBGMS05	<0,000750 µg/l	
PCB 118 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 138 (4)(1)(2)	W-PCBGMS05	<0,00120 µg/l	
PCB 153 (4)(1)(2)	W-PCBGMS05	<0,00110 µg/l	
PCB 180 (4)(1)(2)	W-PCBGMS05	<0,000950 µg/l	
PCB 28 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCB 52 (4)(1)(2)	W-PCBGMS05	<0,00110 μg/l	
PCBs (soma de congéneros) (4)(1)(2)(7)	W-PCBGMS05	<0,00730 μg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,000 µg/l	
		• •	
Alacloro (4)(1)(2) Bentazona (4)(1)(2)	W-PESLMS02 W-PESLMS04	<0,030 µg/l <0,030 µg/l	

Boletim Analítico: 2021/03833

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação N	létodo	Resultado	Incerteza
Dimetoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Ometoato (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Diurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Imidaclorpride (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Linurão (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
MCPA (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Mecoprope (4)(1)(2)	W-PESLMS04	<0,030 µg/l	
Metalaxil (isómeros) (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Oxadiazão (4)(1)(2)	W-PESLMS07	<0,030 µg/l	
Tebuconazol (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Terbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
Desetilterbutilazina (4)(1)(2)	W-PESLMS02	<0,030 µg/l	
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Octilfenóis (4)(1)(2)	W-AEOGMS01	<0,010 µg/l	
Nonilfenóis (4)(1)(2)(7)	W-AEOGMS01	<0,100 µg/l	
Dietilamina (5)(2)	W-DEA	<0,01 mg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	

V. N. de Gaia, 27 de dezembro de 2021 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03833 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

2021/03844

Superior

ID Colheita: 2104388

Ponto de Amostragem: Piezómetro MW13

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,58 mg/l O2	±6%
рН	ISO 10523:2008	5,6 a 22,25 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	116,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,17 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	0,44 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	132 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	42,4 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,4 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,4 µg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	21,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	14,2 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	1,15 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03844

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	705 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03845

Requisitante: PETROGAL - Refinaria de Sines

Versão: 1.0

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104392

Ponto de Amostragem: Piezómetro MW17

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,33 mg/l O2	±6%
pH	ISO 10523:2008	6,7 a 23,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	28,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	23,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,17 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	35,0 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	168 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,2 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	2,0 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	18,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	5,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,33 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03845

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	410 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Definitivo

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03846

Requisitante: PETROGAL - Refinaria de Sines

Versão: 1.0

Apartado 15 7520-952 Sines

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)

 Designação da Amostra:
 Monitorização Rede Piezométrica de Sines - Aquifero

Superior

ID Colheita: 2104393

Ponto de Amostragem: Piezómetro MW20

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 23 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Nível Piezómetrico (1)	HPa002-15	1,83 m	±1%

Name (χ(γ)(γ) WNO-NS-SPC -92 mg/ NOS -18 mg/ NOS Hidrogenocatrosta (γ(γ)?) WSOL-SPC C2 159 mg/ HCO3 1278 mg/ NOS Hidrogenocatrosta (γ(γ)?) WMETAXET -5.0 μg/ As -1278 mg/ NOS Anselmo (q(γ)) WMETAXET -5.0 μg/ As -1278 mg/ NOS Cadimia (γ(γ)) WMETAXET -6.0 μg/ Dc -1278 mg/ NOS Cadimia (γ(γ)) WMETAXET -6.0 μg/ Dc -1278 mg/ NOS Chumbo (γ(γ)) WMETAXET -6.0 μg/ Dc -1278 mg/ NOS Chumbo (γ(γ)) WMETAXET -6.0 μg/ Dc -178 mg/ NOS Chumbo (γ(γ)) WMETAXET -6.0 μg/ Dc -178 mg/ NOS Chumbo (γ(γ)) WMETAXET -6.0 μg/ Dc -178 mg/ NOS Chumbo (γ(γ)) WMETAXET -1.0 μg/ Cq -178 mg/ NOS Chomo dissolvido (γ(γ)(γ) WMETAXET -1.0 μg/ Cq -178 mg/ NOS Mercairo dissolvido (γ(γ)(γ) WHG-ASFE -1.0 μg/ Cq -1.0 μg/ Cq Nique (γ(γ) WMETAXET -1.0 μg/ Cq -1.0 μg/ Cq Nique (γ(γ) WMETAXET -1.0 μg/ Cq	Determinação	Método	Resultado	Incerteza
Horizogenocabrolato (κ)(γ) (χ) W-CO2F-CC2 159 mgl HCO3 ± 124 mgl A radinio ((κ)(γ) W-METAXFX1 450 μgl As 1 FA radinio ((κ) γ) 1 FA radinio ((κ) γ) 450 μgl Ph 1 FA radinio ((κ) γ)	Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Arseinio (A)Y)	Sulfatos (4)(1)(2)	W-SO4-SPC	23,3 mg/l SO4	±30%
Arseino dissolvido (4)(1)(2)	Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	159 mg/l HCO3	±12%
Cademio (A)(1) W-METAXFX1 40,40 μgl Cd Cademio (A)(1)(2) W-METAXFX1 40,40 μgl Cd Chumbo (A)(1)(2) W-METAXFX1 50,40 μgl Pb Chumbo (A)(1) W-METAXFX1 40,90 μgl Pb Chumbo (A)(1) W-METAXFX1 2,90 μgl Cu 19% Cobre (A)(1) W-METAXFX1 1,90 μgl Cu 19% Cromio (A)(1) W-METAXFX1 1,90 μgl Cu 19% Cromio (A)(1) W-METAXFX1 1,00 μgl Cr 19% Cromio (A)(1) W-METAXFX1 4,00 μgl LQ 19% Mercifich dissolvido (A)(1)(2) W-METAXFX1 4,00 μgl LQ 19% Mercifich dissolvido (A)(1)(2) W-METAXFX1 4,90 μgl RQ 19% Niquel (A)(1) W-METAXFX1 4,90 μgl RQ 19% Niquel (A)(1) W-METAXFX1 4,90 μgl RQ 19% Zinco (A)(1) W-VOCGMS01 4,90 μgl RQ 19% Benzero (A)(1) W-VOCGMS01 4,90 μgl RQ 4,90 μgl RQ Zinco (A)(1) W-VOCGMS01 4,10 μgl RQ 4,90 μgl RQ <th< td=""><td>Arsénio (4)(1)</td><td>W-METAXFX1</td><td><5,0 μg/l As</td><td></td></th<>	Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Cadmino dissolvido (4)(1)(2) W-METAXFL1 <.0,40 μg/l Cd Chumbo (4)(1) W-METAXFXL1 <.0,50 μg/l Po Chumbo (1)(2) W-METAXFXL1 <.0,50 μg/l Po Cobre (4)(1) W-METAXFXL1 <.0,50 μg/l Cu ±19% Cobre (4)(1) W-METAXFXL1 <.0,10 μg/l Cu ±19% Cofrain (4)(1) W-METAXFXL1 <.0,10 μg/l Cq ±19% Crómio (4)(1) W-METAXFL1 <.0,10 μg/l Cq ±19% Crómio (4)(1) W-METAXFL1 <.0,10 μg/l Cq ±19% Mercaño (4)(1)(2) W-METAXFX <.0,10 μg/l Tg ±19% Miquel (4)(1)(2) W-METAXFX <.0,10 μg/l Tg ±19% Niquel (4)(1)(2) W-METAXFX <.0,10 μg/l Tg ±19% Niquel (4)(1) W-METAXFL1 <.0,10 μg/l Tg ±19% Binzano (4)(1) W-METAXFL1 <.0,20 μg/l Tg ±19% Binzano (4)(1) W-VOCGMS01 <.0,20 μg/l Tg ±19% Binzano (4)(1) W	Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Chumbo (λ(1) W-METAXFX1 <5,0 μg/l Pb Chumbo dissolvido (λ(1)(2) W-METAXFX1 <5,0 μg/l Pb Cobre (λ(1) W-METAXFX1 <5,0 μg/l Cu ±19% Cobre (λ(1) W-METAXFX1 <1,0 μg/l Cu ±19% Comio (λ(1) W-METAXFX1 ±1,0 μg/l Cu ±19% Comio (λ(1) W-METAXFX1 ±1,0 μg/l Cu ±1,0 μg/l Cu Crissol dissolvido (λ(1)(2) W-HETAXFX1 ±1,0 μg/l Cu ±1,0 μg/l Cu Mercário (dissolvido (λ(1)(2)) W-HETAXFX1 ±0,0 μg/l hg ±1,0 μg/l Cu Mercário dissolvido (λ(1)(2) W-HETAXFX1 ±0,0 μg/l hg ±1,0 μg/l Cu Viquel dissolvido (λ(1)(2) W-METAXFX1 ±1,0 μg/l kg/l kg/l kg/l kg/l kg/l kg/l kg/l k	Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Chumbo dissolvido (λ(1)(2) W-METAXFL1 \$0.0gli Pb Cobre (λ(1) W-METAXFX1 2,8 μgli Co. 119% Cobre dissolvido (λ(1)(2) W-METAXFX1 1,0 μgli Co. 19% Crómio (λ(1) W-METAXFX1 1,0 μgli Cr. 19% Crómio (λ(1) W-METAXFL1 <1,0 μgli Cr.	Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cobre (s)(1) W-METAXFX1 2.8 μg² Cu ±19% Cobre (s)(1) W-METAXFX1 4.0 μg/LC ±19% Cofmiol (sk)(1)(2) W-METAXFX1 1.0 μg/LC ±19% Cofmiol (sk)(1)(2) W-METAXFX1 4.0 μg/LC ±19% Mercúnio (sk)(1) W-METAXFX1 4.0 μg/LC ±19% Mercúnio (sk)(1) W-HGAFSFX 4.0010 μg/l Hg ±19% Niquel (4)(1) W-METAXFX1 4.0 μg/l Ng ±19% Niquel (4)(1) W-METAXFX1 4.8 μg/l Ng ±19% Zinco (k)(1) W-METAXFX1 503 μg/L ±19% Zinco (sk)(1) W-METAXFX1 4.9 μg/l ±19% Benzeno (k)(1) W-VOCGMS01 ±19% ±19% Benzeno (k)(1) W-VOCGMS01 ±19% ±43% D-Xileno (k)(1) W-VOCGMS01 ±19 ±43% Φ-Xileno (k)(1) W-VOCGMS01 ±19 ±43% Sileno (k)(1) W-VOCGMS01 ±19 ±19 ±43% Xileno (k)(1)(2) W-VOCGMS01 ±19 ±19	Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Cobre dissolvido (4)(1)2) WMETAXFL1 <1,0 μg/l Cu	Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Crómio (4/1) W-METAXFX1 1,6 μgl Cr ±19% Crómio dissolvido (4/1)(2) W-METAXFL1 1,0 μgl Cr ±19% Mercúrio (4/1) W-HG-AFSFX 4,0 μgl Cr ±19% Mercúrio (4/1) W-HG-AFSFX 0,010 μg/l Hg ±19% Niquel (4/1) W-METAXFX1 6,8 μg/l Ni ±19% Niquel dissolvido (4/1)(2) W-METAXFX1 509 μg/l Zn ±19% Zinco (4/1) W-METAXFX1 509 μg/l Zn ±19% Zinco (4/1) W-METAXFX1 509 μg/l Zn ±19% Zinco dissolvido (4/1)(2) W-METAXFX1 509 μg/l Zn ±19% Zinco dissolvido (4/1)(2) W-METAXFX1 509 μg/l Zn ±19% Zinco dissolvido (4/1)(2) W-WCCGMS01 2,50 μg/l Zn ±19% Benzeno (4/1) W-VCCGMS01 0,20 μg/l ±43% Zilneo (4/1) W-VCCGMS01 0,16 μg/l ±43% Xileono (4/1)(2) W-VCCGMS01 1,2 ±1 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10	Cobre (4)(1)	W-METAXFX1	2,8 μg/l Cu	±19%
Cromio dissolvido (λ(1)(2) W-METAXFL1 <1,0 μg/l C Mercuino (λ(1) W-HG-AFSFX <0.010 μg/l Hg Mercuino (λ(1)(2) W-HG-AFSFL <0.010 μg/l Hg Niquel (λ(1)(1) W-METAXFXI 6,8 μg/l Ni ±19% Niquel (λ(1)(2) W-METAXFL1 4,8 μg/l Ni ±19% Zinco (λ(1) W-METAXFXI 503 μg/l Zn ±19% Zinco (λ(1) W-METAXFXI 503 μg/l Zn ±19% Zinco (λ(1)(2) W-METAXFXI 503 μg/l Zn ±19% Benzeno (λ(1)(1) W-VOCGMS01 202 μg/l ±19% Tolueno (λ(1)(1) W-VOCGMS01 4,50 μg/l ±19% Ellibenzeno (λ(1)(1) W-VOCGMS01 3,5 μg/l ±3% Allenos (λ(1)(2) W-VOCGMS01 1,6 μg/l ±3% Xilenos (λ(1)(2) W-VOCGMS01 1,2 μg/l ±2 μg/l Xilenos (λ(1)(2) W-VOCGMS01 ±10 μg/l ±2 μg/l 1,2,2 ±1-cilorobenzeno (λ(1)(2) W-VOCGMS01 ±0 μg/l ±2 μg/l 1,2,3 ±1-cilorobenzeno (λ(1)(2) W-VOCGMS01 ±0 μg/l <th< td=""><td>Cobre dissolvido (4)(1)(2)</td><td>W-METAXFL1</td><td><1,0 μg/l Cu</td><td></td></th<>	Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Merción (a)(1) W-HG-AFSFX <0,010 μg/l Hg Merción dissolvido (a)(1)(2) W-HG-AFSFL <0,010 μg/l Hg Niquel (dis) W-METAXFX1 6.8 μg/l Ni ±19% Niquel dissolvido (a)(1)(2) W-METAXFX1 50 μg/l Zn ±19% Zinco (a)(1) W-METAXFX1 50 μg/l Zn ±19% Zinco dissolvido (a)(1)(2) W-METAXFX1 50 μg/l Zn ±19% Benzeno (a)(1) W-VOCGMS01 40,20 μg/l ±19% Ellibenzeno (a)(1) W-VOCGMS01 40,50 μg/l ±19% D-xileno (a)(1) W-VOCGMS01 43% ±19% w-p-xileno (a)(1) W-VOCGMS01 0,71 μg/l ±3% xileno (a)(1)(7) W-VOCGMS01 0,71 μg/l ±3% xileno (a)(1)(7) W-VOCGMS01 0,10 μg/l ±3% xileno (a)(1)(7) W-VOCGMS01 0,10 μg/l ±4 xileno (a)(1)(2) W-VOCGMS01 0,10 μg/l ±4 xileno (a)(1)(2) W-VOCGMS01 0,00 μg/l ±4 xileno (a)(1)(2) W-VOCGMS01 0,00 μg/l ±	Crómio (4)(1)	W-METAXFX1	1,6 μg/l Cr	±19%
Mercūno dissolvido (4)(1)(2) W-HG-AFSFL <0,010 μg/l Hg Niquel (4)(1) W-METAKFX1 6,8 μg/l Ni ±19% Niquel (dissolvido (4)(1)(2) W-METAKFX1 4,8 μg/l Ni ±19% Zinco (4)(1) W-METAKFX1 503 μg/l Zn ±19% Zinco dissolvido (4)(1)(2) W-METAKFL1 42,5 μg/l Zn ±19% Benzeno (4)(1) W-VOCGMS01 42,5 μg/l Zn ±19% Benzeno (4)(1) W-VOCGMS01 40,50 μg/l ±19% Ellibenzeno (4)(1) W-VOCGMS01 0,50 μg/l ±43% Userono (4)(1) W-VOCGMS01 0,71 μg/l ±43% O-xileno (4)(1) W-VOCGMS01 0,71 μg/l ±43% Xilenos (4)(1)(7) W-VOCGMS01 1,22 μg/l ±12 μg/l BTEX (soma) (4)(1)(7) W-VOCGMS01 0,10 μg/l ±12 μg/l 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,20 μg/l ±12 μg/l 1,3,5-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,00 μg/l ±12 μg/l Eter terc-buillelino (4)(1)(2) W-VOCGMS01 0,00 μg/l ±43%	Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Niquel (4)(1) W-METAXFX1 6,8 μg/l Ni ±19% Niquel dissolvido (4)(1)(2) W-METAXFL1 4,8 μg/l Ni ±19% Zinco (4)(1) W-METAXFL1 503 μg/l Zn ±19% Zinco dissolvido (4)(1)(2) W-METAXFL1 42,5 μg/l Zn ±19% Elibenzeno (4)(1) W-VOCGMS01 2,020 μg/l ±19% Tolueno (4)(1) W-VOCGMS01 0,35 μg/l ±43% m,p-xileno (4)(1) W-VOCGMS01 0,35 μg/l ±43% o-xileno (4)(1) W-VOCGMS01 0,16 μg/l ±43% o-xileno (4)(1) W-VOCGMS01 0,16 μg/l ±43% 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,10 μg/l ±43% 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,10 μg/l ±44 1,3,5-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,20 μg/l ±43% 1,3,5-triclorobenzeno (4)(1)(2) W-VOCGMS01 0,20 μg/l ±43% Tricloroetileno (4)(1)(2) W-VOCGMS01 0,20 μg/l ±43% Eterac-butilientilico (ETBE) (4)(1) W-VOCGMS01 0,000 μg/l ±4	Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Niquel dissolvido (4)(1)(2)	Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Zinco (4/1) W-METAXFX1 503 µg/l Zn ±19% Zinco dissolvido (4/1)(2) W-METAXFL1 42,5 µg/l Zn ±19% Benzeno (4/1) W-VOCGMS01 <0,20 µg/l	Níquel (4)(1)	W-METAXFX1	6,8 μg/l Ni	±19%
Zinco dissolvido (4)(1)(2) W-METAXFL1 42,5 μg/l Zn ±19% Benzeno (4)(1) W-VOCGMS01 <0,20 μg/l	Níquel dissolvido (4)(1)(2)	W-METAXFL1	4,8 μg/l Ni	±19%
Benzeno (4)(1) W-VOCGMS01 <0,20 μg/l Tolueno (4)(1) W-VOCGMS01 <0,50 μg/l	Zinco (4)(1)	W-METAXFX1	503 μg/l Zn	±19%
Tolueno (4)(1) W-VOCGMS01 < 0,50 μg/l ±43% Etilbenzeno (4)(1) W-VOCGMS01 0,35 μg/l ±43% m,p-xileno (4)(1) W-VOCGMS01 0,71 μg/l ±43% o-xileno (4)(1) W-VOCGMS01 0,87 μg/l ±43% Xilenos (4)(1)(7) W-VOCGMS01 0,87 μg/l ±43% BTEX (soma) (4)(1)(7) W-VOCGMS01 1,22 μg/l ±41 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 μg/l	Zinco dissolvido (4)(1)(2)	W-METAXFL1	42,5 μg/l Zn	±19%
Etilbenzeno (4)(1)	Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
m.p-xileno (4)(1) W-VOCGMS01 0,71 μg/l ±43% c-xileno (4)(1) W-VOCGMS01 0,16 μg/l ±43% Xilenos (4)(1)(7) W-VOCGMS01 0,87 μg/l BTEX (soma) (4)(1)(7) W-VOCGMS01 1,22 μg/l 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 μg/l	Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
C-xileno (4)(1) W-VOCGMS01 0,16 µg/l ±43% Xilenos (4)(1)(7) W-VOCGMS01 0,87 µg/l BTEX (soma) (4)(1)(7) W-VOCGMS01 1,22 µg/l 1,2,3-tricloroberzeno (4)(1)(2) W-VOCGMS01 -0,10 µg/l 1,2,4-tricloroberzeno (4)(1)(2) W-VOCGMS01 -0,20 µg/l 1,3,5-tricloroberzeno (4)(1)(2) W-VOCGMS01 -0,20 µg/l Tetracloroetileno (4)(1)(2) W-VOCGMS01 -0,20 µg/l Tricloroetileno (4)(1)(2) W-VOCGMS01 -0,10 µg/l Éter terc-butiletilico (ETBE) (4)(1) W-VOCGMS01 -0,20 µg/l Éter terc-butiletilico (MTBE) (4)(1) W-VOCGMS01 -0,20 µg/l Hexaclorobenzeno (HCB) (4)(1)(2) W-VOCGMS01 -0,0050 µg/l Hexaclorobutadieno (HCBD) (4)(1)(2) W-OCPECD01 -0,0050 µg/l Hexaclorobutadieno (HCBD) (4)(1)(2) W-OCPECD01 -0,010 µg/l Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2) W-TPHFID08 156 µg/l ±30% Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2) W-TPHFID08 774 µg/l ±30%	Etilbenzeno (4)(1)	W-VOCGMS01	0,35 μg/l	±43%
Xilenos (4)(1)(7) W-VOCGMS01 0,87 µg/l BTEX (soma) (4)(1)(7) W-VOCGMS01 1,22 µg/l 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 µg/l	m,p-xileno (4)(1)	W-VOCGMS01	0,71 μg/l	±43%
BTEX (soma) (4)(1)(7) W-VOCGMS01 1,22 μg/l 1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 μg/l	o-xileno (4)(1)	W-VOCGMS01	0,16 μg/l	±43%
1,2,3-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 µg/l 1,2,4-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 µg/l	Xilenos (4)(1)(7)	W-VOCGMS01	0,87 µg/l	
1,2,4-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,10 µg/l	BTEX (soma) (4)(1)(7)	W-VOCGMS01	1,22 μg/l	
1,3,5-triclorobenzeno (4)(1)(2) W-VOCGMS01 <0,20 µg/l Tetracloroetileno (4)(1)(2) W-VOCGMS01 <0,020 µg/l Tricloroetileno (4)(1)(2) W-VOCGMS01 <0,010 µg/l Éter terc-butilnet(lico (ETBE) (4)(1) W-VOCGMS01 0,20 µg/l Éter terc-butilnet(lico (MTBE) (4)(1) W-VOCGMS01 1,47 µg/l 143% Hexaclorobenzeno (HCB) (4)(1)(2) W-OCPECD01 0,0050 µg/l Hexaclorobutadieno (HCBD) (4)(1)(2) W-OCPECD01 0,010 µg/l Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2) W-TPHFID08 156 µg/l 130% Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2) W-TPHFID08 774 µg/l 130%	1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroetileno (4)(1)(2) W-VOCGMS01 <0,20 μg/l Éter terc-butiletílico (ETBE) (4)(1) W-VOCGMS01 <0,20 μg/l	1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tricloroetileno (4)(1)(2) W-VOCGMS01 <0,10 μg/l Éter terc-butiletílico (ETBE) (4)(1) W-VOCGMS01 <0,20 μg/l	1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butiletílico (ETBE) (4)(1) W-VOCGMS01 <0,20 µg/l	Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmet(lico (MTBE) (4)(1) W-VOCGMS01 1,47 µg/l ±43% Hexaclorobenzeno (HCB) (4)(1)(2) W-OCPECD01 <0,0050 µg/l	Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2) W-OCPECD01 <0,0050 μg/l	Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2) W-OCPECD01 <0,010 μg/l	Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	1,47 μg/l	±43%
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2) W-TPHFID08 <10,0 μg/l Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2) W-TPHFID08 156 μg/l ±30% Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2) W-TPHFID08 774 μg/l ±30%	Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2) W-TPHFID08 156 μg/l ±30% Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2) W-TPHFID08 774 μg/l ±30%	Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<10,0 µg/l	
	Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	156 μg/l	±30%
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2) W-ΤΡΗΓΙD08 839 μg/l ±30%	Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	774 µg/l	±30%
	Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	839 µg/l	±30%

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

eterminação	Método	Resultado	Incerteza
idrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<20 µg/l	
idrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<20 µg/l	
idrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	1770 µg/l	
idrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<10,0 µg/l	
idrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<60 µg/l	
idrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<40 µg/l	
idrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	84 μg/l	±30%
idrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<20 μg/l	
idrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<20 µg/l	
idrocarbonetos Aromáticos Totais (C10-C40) (4	W-TPHFID08	<190 µg/l	
idrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<10,0 µg/l	
idrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	161 µg/l	±40%
idrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	810 µg/l	±40%
idrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	923 µg/l	±40%
idrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<20 µg/l	
idrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<20 µg/l	
idrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	1890 μg/l	

Observações:

Os Limites de Quantificação para o método W-TPHFID01 foram aumentados ao insuficiente volume de amostra.

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

o resultado é actido desprezando os

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico: 2021/03847

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Águas Naturais Doces (Subterrâneas)

Superior

ID Colheita:2104413Ponto de Amostragem:Piezómetro PZ46

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Tipo Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,68 mg/l O2	±6%
рН	ISO 10523:2008	5,9 a 20,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-136,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,43 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	<5,0 mg/l SO4	
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	112 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 μg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 μg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 μg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	13,7 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	3,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	1130 µg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	882 µg/l	±43%
Etilbenzeno (4)(1)	W-VOCGMS01	1050 μg/l	±43%
m,p-xileno (4)(1)	W-VOCGMS01	2490 µg/l	±43%
o-xileno (4)(1)	W-VOCGMS01	698 µg/l	±43%
Xilenos (4)(1)(7)	W-VOCGMS01	3190 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	6250 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<2,00 μg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<2,00 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<2,00 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	754 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03847

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	38,5 μg/l	±30%
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	895 µg/l	±30%
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	118 µg/l	±30%
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	1010 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	933 µg/l	±40%
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	118 µg/l	±40%
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	1050 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	246 μS/cm	±17%

Observações:

Os Limites de Quantificação para o método W-VOCGMS01 foram aumentados devido à presença de outras espécies contaminantes.

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/03847 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Prestação de Serviços, destão é Controle Allibiental, Lu

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/03848

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104414

Ponto de Amostragem: Piezómetro PZ47

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,45 mg/l O2	±6%
рН	ISO 10523:2008	5,8 a 20,65 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	213,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,63 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	2,98 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	24,9 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	26,6 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	3,8 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,8 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	1,4 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	8,8 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	6,8 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	46,7 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	25,7 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,80 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03848

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	285 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/03849

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita:2104420Ponto de Amostragem:Piezómetro PZ57

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 11 novembro 2021

Recepção: 12 novembro 2021 Início da Análise: 12 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,14 mg/l O2	±6%
рН	ISO 10523:2008	7,0 a 23,10 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	98,1 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	23,1 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,40 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	0,65 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	30,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	316 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	2,6 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,6 µg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	1,3 µg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	2,6 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	2,0 µg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	32,7 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	18,0 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,40 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03849

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	781 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Definitivo

Versão: 1.0

Apartado 15

7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/03906

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104387

Ponto de Amostragem: Piezómetro MW12

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 17 novembro 2021

Recepção: 18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
pH	ISO 10523:2008	6,2 a 21,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	98,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,10 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	2,50 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	33,6 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	141 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	6,1 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 μg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 μg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	2,2 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,0 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	32,3 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	17,2 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 μg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 μg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 μg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	29,5 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03906

Determinações laboratoriais

drocarbonetos Alifáticos > C12-C16 (4)(1)(2) drocarbonetos Alifáticos > C16-C21 (4)(1)(2) drocarbonetos Alifáticos > C21-C30 (4)(1)(2) drocarbonetos Alifáticos > C30-C35 (4)(1)(2)	W-TPHFID08 W-TPHFID08	<30 μg/l <20 μg/l	
drocarbonetos Alifáticos >C21-C30 (4)(1)(2) drocarbonetos Alifáticos >C30-C35 (4)(1)(2)		<20 ua/l	
drocarbonetos Alifáticos >C30-C35 (4)(1)(2)		-20 pg/1	
	W-TPHFID08	<20 μg/l	
	W-TPHFID08	<10 µg/l	
frocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
drocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 μg/l	
drocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
drocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
drocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
drocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
drocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
drocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
drocarbonetos Aromáticos Totais (C10-C40) (4)	W-TPHFID08	<95,0 μg/l	
drocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
drocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
drocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
drocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
drocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
drocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
drocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
ndutividade Eléctrica (2)	NP EN 27888:1996	501 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avallação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/03907

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104389

Piezómetro MW14 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 17 novembro 2021

18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,77 mg/l O2	±6%
рН	ISO 10523:2008	5,1 a 23,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	241,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	23,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	4,99 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	15,3 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	53,8 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	30,0 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	24,7 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	5,0 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,4 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	39,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	30,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

eterminação	Método	Resultado	Incerteza
lidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Aromáticos Totais (C10-C40) (4)	W-TPHFID08	<95,0 µg/l	
lidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
lidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
lidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
lidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
lidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
lidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
condutividade Eléctrica (2)	NP EN 27888:1996	359 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico: 2021/03908 Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Designação da Amostra:

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104390

Piezómetro MW15 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 17 novembro 2021

18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,70 mg/l O2	±6%
pH	ISO 10523:2008	6,2 a 22,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-77,1 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,46 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	<5,0 mg/l SO4	
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	318 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	0,65 μg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,2 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,9 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	2,1 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	110 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	6,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	215 μg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	6,42 µg/l	±43%
Etilbenzeno (4)(1)	W-VOCGMS01	6,27 μg/l	±43%
m,p-xileno (4)(1)	W-VOCGMS01	11,7 μg/l	±43%
o-xileno (4)(1)	W-VOCGMS01	1,60 μg/l	±43%
Xilenos (4)(1)(7)	W-VOCGMS01	13,3 μg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	241 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	242 µg/l	±43%
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	97,6 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	135 μg/l	±30%
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	135 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	568 μg/l	±30%
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	173 μg/l	±30%
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 μg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	742 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	704 μg/l	±40%
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	173 μg/l	±40%
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	877 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	676 μS/cm	±17%

Observações:

Os Limites de Quantificação para o método W-VOCGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Versão: 1.0 Boletim Definitivo 2021/03908 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Prestação de serviços, destão e controle Alimental, co

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

2021/03909

Superior

ID Colheita: 2104391

Ponto de Amostragem: Piezómetro MW16

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 17 novembro 2021

Recepção: 18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
pH	ISO 10523:2008	6,3 a 22,30 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	165,4 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,53 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	4,88 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	46,5 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	80,2 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	47,6 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	13,8 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	2,2 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	6,6 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	211 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	35,8 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03909

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) 1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	346 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avallação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/03910

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Designação da Amostra:

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104415 Piezómetro PZ48 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 17 novembro 2021

18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,86 mg/l O2	±6%
pH	ISO 10523:2008	6,7 a 20,60 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	41,6 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,02 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	268 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	182 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	22,6 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 μg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	8,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	0,24 µg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	<0,50 μg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03910

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	1995 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Monitorização Rede Piezométrica de Sines - Aquífero Designação da Amostra:

2021/03911

Superior

ID Colheita: 2104416 Piezómetro PZ49 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 17 novembro 2021

18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,79 mg/l O2	±6%
рН	ISO 10523:2008	6,1 a 20,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	189,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,17 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	10,4 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	144 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	194 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,2 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,2 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 μg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	92,4 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	77,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03911

Determinações laboratoriais

Determinações laboratoriais			
Determinação !	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	852 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Trestagas ac serriços, destas e controle riminental, est

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

2021/03912

Superior

ID Colheita:2104417Ponto de Amostragem:Piezómetro PZ50

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 17 novembro 2021

Recepção: 18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
pH	ISO 10523:2008	6,5 a 22,60 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-13,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,95 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	33,0 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	139 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	27,8 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	5,2 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	2,5 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	12,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	6,2 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	34,1 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03912

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	410 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avallação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

2021/03913

Superior

ID Colheita:2104418Ponto de Amostragem:Piezómetro PZ51

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 17 novembro 2021

Recepção: 18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,68 mg/l O2	±6%
pH	ISO 10523:2008	5,4 a 19,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	212,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	4,51 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	9,79 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	56,4 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	27,3 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	4,0 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,8 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,012 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	14,2 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	13,4 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	14,3 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	10,6 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 μg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 μg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 μg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,32 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/03913

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	500 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Prestação de Serviços, destão é Controle Allibiental, Lu

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/03914

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita:2104421Ponto de Amostragem:Piezómetro PZ58

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 17 novembro 2021

Recepção: 18 novembro 2021 Início da Análise: 18 novembro 2021 Conclusão da Análise: 21 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
pH	ISO 10523:2008	5,3 a 19,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	210,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,82 m	±1%

Determinação	Método	Resultado	Incerteza
Nitratos (4)(1)(2)	W-NO3-SPC	0,92 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	24,9 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	14,2 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 μg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	3,6 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	1,6 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	1,7 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	1,0 μg/l Cr	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 μg/l Hg	
Níquel (4)(1)	W-METAXFX1	7,3 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	6,7 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	11,4 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	10,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 μg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 μg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 μg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 μg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	90,6 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) 1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
Condutividade Eléctrica (2)	NP EN 27888:1996	317 μS/cm	±17%

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avallação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Designação da Amostra:

Monitorização Rede Piezométrica de Sines - Aquífero

2021/04049

Superior

ID Colheita: 2104401

Piezómetro MW42 Ponto de Amostragem:

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

LQA - Ambiente, Lda. Amostragem por: Data da Amostragem: 23 novembro 2021

24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021 Recepção:

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,39 mg/l O2	±6%
рН	ISO 10523:2008	6,3 a 21,40 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-4,2 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,4 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,94 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1641 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	253 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	134 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	11,8 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	8,7 µg/l As	±19%
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	18,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	10,2 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,78 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04049

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Prestação de Serviços, destão e Controle Ambiental, Co.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04050

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104402

Ponto de Amostragem: Piezómetro MW43

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,39 mg/l O2	±6%
рН	ISO 10523:2008	6,5 a 21,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-34,9 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,42 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	771 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	0,59 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	56,8 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	319 mg/I HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,0 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	37,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	24,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04050

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04051

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104405

Ponto de Amostragem: Piezómetro MW47

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,48 mg/l O2	±6%
рН	ISO 10523:2008	5,2 a 20,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	198,8 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,57 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1359 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	2,72 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	412 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	38,6 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 μg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,1 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,186 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,042 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	12,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	10,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,28 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04051

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico: 2021/04052

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104407

Ponto de Amostragem: Piezómetro MW49

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,30 mg/l O2	±6%
pH	ISO 10523:2008	4,9 a 22,10 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	214,9 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,1 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,35 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	502 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	20,2 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	114 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	37,0 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	3,8 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,1 µg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	3,0 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	2,3 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	6,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	5,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,58 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04052

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Prestação de Serviços, destao e Controle Ambientas, Las

Boletim Analítico: 2021/04053

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104422
Ponto de Amostragem: Piezómetro PZ61

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,85 mg/l O2	±6%
pH	ISO 10523:2008	5,6 a 21,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-71,7 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	21,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,72 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	549 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	<5,0 mg/l SO4	
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	180 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	23,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	6,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	45,9 µg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	5,98 µg/l	±43%
m,p-xileno (4)(1)	W-VOCGMS01	14,4 µg/l	±43%
o-xileno (4)(1)	W-VOCGMS01	<0,85 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	14,4 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	66,3 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	3,37 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	5,7 μg/l	±30%
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	41,0 µg/l	±30%
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	32 μg/l	±30%
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	46,7 μg/l	±40%
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	32 μg/l	±40%
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	

Observações:

Os Limites de Quantificação para o método W-VOCGMS01 foram aumentados devido à interferência da matriz.

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

> Versão: 1.0 Boletim Definitivo

2021/04053 **Boletim Analítico:**

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04054

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita:2104425Ponto de Amostragem:Piezómetro PZ69

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	5,85 mg/l O2	±6%
рН	ISO 10523:2008	4,3 a 22,0 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	254,0 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,0 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,08 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	3058 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	23,6 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	946 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	<0,01 mg/l HCO3	
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	0,40 μg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	70,9 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	32,6 μg/l Pb	±19%
Cobre (4)(1)	W-METAXFX1	40,5 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	26,1 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	15,5 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	2,6 μg/l Cr	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,997 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,017 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	38,4 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	38,0 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	13500 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	13100 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	1,42 µg/l	±43%
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04054

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04055

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104385
Ponto de Amostragem: Furo 4

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,40 mg/l O2	±6%
рН	ISO 10523:2008	8,0 a 18,33 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-110,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	18,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	7,49 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	303 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	<5,0 mg/l SO4	
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	92,6 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	<2,0 μg/l Zn	
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04055

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04056

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)

 Designação da Amostra:
 Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104386

Ponto de Amostragem: Piezómetro MW08

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,12 mg/l O2	±6%
рН	ISO 10523:2008	5,3 a 19,50 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	2,4 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,5 °C	±3%
Nível Piezómetrico (1)	HPa002-15	2,54 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	999 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	206 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	57,6 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	9,0 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	66,9 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	7,6 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	2,5 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,050 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	5,4 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	90,9 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	22,0 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	3,34 µg/l	±43%
Tricloroetileno (4)(1)(2)	W-VOCGMS01	3,24 µg/l	±43%
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	0,26 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04056

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 µg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0 Boletim Definitivo

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04057

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104397

Ponto de Amostragem: Piezómetro MW38

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	0,69 mg/l O2	±6%
pH	ISO 10523:2008	6,1 a 18,80 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-50,1 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	18,8 °C	±3%
Nível Piezómetrico (1)	HPa002-15	4,89 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	3589 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	156 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	455 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	28,0 μg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	0,85 μg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	64,6 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,6 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	2,2 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,076 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,011 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	6,4 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	5,6 µg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	24,3 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	23,2 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	4,88 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04057

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) 7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
didrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04058

Requisitante: PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Versão: 1.0

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104398

Ponto de Amostragem: Piezómetro MW39

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,48 mg/l O2	±6%
pH	ISO 10523:2008	6,1 a 20,30 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	168,3 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	4,89 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	1407 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	1,14 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	185 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	220 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	7,8 µg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	0,70 μg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	4,6 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	1,0 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,021 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 μg/l Hg	
Níquel (4)(1)	W-METAXFX1	7,4 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	2,2 μg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	70,5 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	5,6 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	2,43 µg/l	±43%
Tricloroetileno (4)(1)(2)	W-VOCGMS01	0,26 µg/l	±43%
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	9,18 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04058

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Versão: 1.0

Apartado 15 7520-952 Sines

PETROGAL - Refinaria de Sines

Requisitante:

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04059

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104424
Ponto de Amostragem: Piezómetro PZ67

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,50 mg/l O2	±6%
рН	ISO 10523:2008	4,8 a 20,10 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	239,7 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,1 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,72 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	2582 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	29,0 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	977 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	41,4 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 µg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l As	
Cádmio (4)(1)	W-METAXFX1	1,05 µg/l Cd	±19%
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	0,45 μg/l Cd	±19%
Chumbo (4)(1)	W-METAXFX1	38,4 µg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	18,2 μg/l Pb	±19%
Cobre (4)(1)	W-METAXFX1	24,0 μg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	18,6 μg/l Cu	±19%
Crómio (4)(1)	W-METAXFX1	2,3 μg/l Cr	±19%
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,112 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,013 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	32,8 µg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	32,4 µg/l Ni	±19%
Zinco (4)(1)	W-METAXFX1	47,6 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	46,4 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	0,89 µg/l	±43%
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	0,77 µg/l	±43%
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	105 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 μg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04059

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

Boletim Analítico: 2021/04060

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ID Colheita: 2104643
Ponto de Amostragem: Furo 2

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	4,96 mg/l O2	±6%
pH	ISO 10523:2008	8,4 a 19,00 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-0,9 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,0 °C	±3%
Nível Piezómetrico (1)	HPa002-15	9,21 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	745 µS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	<5,0 mg/l SO4	
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	41,9 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	17,2 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	15,7 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Potássio (4)(1)	W-METAXFX1	5,01 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	87,3 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	38,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04060 Versão: 1.0

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 μg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Boletim Analítico: 2021/04060

Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 μg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 μg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

Wastewater.

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa por

the Examination of Water and

casos especificamente mencionados .

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04061

PETROGAL - Refinaria de Sines

Versão: 1.0

Apartado 15 7520-952 Sines

Requisitante:

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)

 Designação da Amostra:
 Monitorização Rede Piezométrica de Sines - Periféricos

ID Colheita: 2104647

ID Colheita: 2104647

Ponto de Amostragem: Piezómetro PZS3

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	7,05 mg/l O2	±6%
pH	ISO 10523:2008	5,1 a 16,60 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	270,0 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	16,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	8,78 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	476 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	31,2 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	40,5 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	44,3 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	13,5 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	1,4 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	14,4 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 μg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Potássio (4)(1)	W-METAXFX1	4,24 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	39,8 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	10,8 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	9,8 µg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<1,0 μg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04061

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

salvo

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

Wastewater.

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a ne

the Examination of Water and

casos especificamente mencionados . utorização escrita.

Boletim Analítico: 2021/04062

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

Águas Naturais Doces (Subterrâneas)

ID Colheita: 2104648

Ponto de Amostragem: Piezómetro PZS4

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 24 novembro 2021

Recepção: 25 novembro 2021 Início da Análise: 25 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Requisitante:

Determinações Locais

Tipo Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,96 mg/l O2	±6%
рН	ISO 10523:2008	6,6 a 20,30 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-162,4 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,3 °C	±3%
Nível Piezómetrico (1)	HPa002-15	4,59 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	637 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	23,2 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	284 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	38,2 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	26,0 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,012 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,012 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	<2,0 μg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Potássio (4)(1)	W-METAXFX1	6,32 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	69,4 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	<2,0 μg/l Zn	
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	5,25 μg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo **2021/04062**

Determinações laboratoriais

Boletim Analítico:

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 μg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 μg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Boletim Analítico: 2021/04062 Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

Wastewater.

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nas casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa previa autorização escrita.

the Examination of Water and

Pagina: 3 de 3

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

Boletim Analítico: 2021/04063

Tipo Amostra: Águas Naturais Doces (Subterrâneas) Requisitante: PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ID Colheita: 2104644
Ponto de Amostragem: Furo 3

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 25 novembro 2021

Recepção: 26 novembro 2021 Início da Análise: 26 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,72 mg/l O2	±6%
рН	ISO 10523:2008	7,2 a 20,20 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-137,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	20,2 °C	±3%
Nível Piezómetrico (1)	HPa002-15	8,14 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	782 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	40,6 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	257 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	45,7 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	29,4 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,011 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Potássio (4)(1)	W-METAXFX1	4,51 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	92,2 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	6,6 µg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	2,74 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	38 µg/l	±30%
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	31 µg/l	±30%
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	12 µg/l	±30%
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4)	W-TPHFID08	<95,0 μg/l	
(1)(7) Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	38 µg/l	±40%
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	31 µg/l	±40%
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	12 µg/l	±40%
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 μg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	0,12 µg/l	±43%
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04063

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

Wastewater.

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa por

the Examination of Water and

casos especificamente mencionados .

Prestação de Serviços, destad e Controle Allimental, Ed

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04064

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Periféricos

ID Colheita: 2104645

Ponto de Amostragem: Piezómetro PZS1

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 25 novembro 2021

Recepção: 26 novembro 2021 Início da Análise: 26 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	1,55 mg/l O2	±6%
pH	ISO 10523:2008	6,7 a 18,70 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	-123,4 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	18,7 °C	±3%
Nível Piezómetrico (1)	HPa002-15	8,45 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	975 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	<0,27 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	64,5 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	360 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	54,0 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	8,1 μg/l Pb	±19%
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 μg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	42,0 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,016 μg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	2,2 μg/l Ni	±19%
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Potássio (4)(1)	W-METAXFX1	5,09 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	105 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	3,0 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Zn	
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	2,91 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Boletim Analítico: Versão: 1.0 Boletim Definitivo

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Bromofórmio (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
	W-VOCGMS01	<1,0 μg/l	
cis-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	

Boletim Analítico: 2021/04064 Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

Wastewater.

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nas casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa previa autorização escrita.

the Examination of Water and

Boletim Definitivo

Versão: 1.0

Apartado 15 7520-952 Sines

LQA - Ambiente Prestação de Serviços, Gestão e Controle Ambiental, Lda.

restriged ac services, destroye controve vinistential, each

Boletim Analítico: 2021/04065

 Tipo Amostra:
 Águas Naturais Doces (Subterrâneas)
 Requisitante:
 PETROGAL - Refinaria de Sines

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Periféricos

ID Colheita: 2104646

Ponto de Amostragem: Piezómetro PZS2

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 25 novembro 2021

Recepção: 26 novembro 2021 Início da Análise: 26 novembro 2021 Conclusão da Análise: 22 dezembro 2021

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	2,54 mg/l O2	±6%
pH	ISO 10523:2008	5,8 a 18,50 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	60,9 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	18,5 °C	±3%
Nível Piezómetrico (1)	HPa002-15	8,09 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	822 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	0,37 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	68,6 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	214 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Cálcio (4)(1)	W-METAXFX1	66,8 mg/l Ca	±19%
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 µg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Magnésio (4)(1)	W-METAXFX1	23,8 mg/l Mg	±19%
Mercúrio (4)(1)	W-HG-AFSFX	0,079 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	0,039 μg/l Hg	±24%
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Potássio (4)(1)	W-METAXFX1	4,95 mg/l K	±19%
Sódio (4)(1)	W-METAXFX1	63,0 mg/l Na	±19%
Zinco (4)(1)	W-METAXFX1	14,0 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	13,8 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	0,57 µg/l	±43%
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	1,11 µg/l	±43%
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04065

Determinação	Método	Resultado	Incerteza
2-Amino-4-Clorofenol (4)(1)(2)	W-CLPLMS01	<10 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1,1,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,1-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1,2,2-tetracloroetano (4)(1)(2)	W-VOCGMS01	<1,00 µg/l	
1,1,2-tricloroetano (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
1,1-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloroeteno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,1-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2,3-tricloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromo-3-cloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,2-dibromoetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2-dicloroetano (4)(1)(2)	W-VOCGMS01	<0,50 µg/l	
1,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
1,3-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
1,4-diclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
2,2-dicloropropano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
2-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
4-clorotolueno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromobenzeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Bromoclorometano (4)(1)(2)	W-VOCGMS01	<2,0 µg/l	
Bromodiclorometano (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	
Bromoformio (4)(1)(2)	W-VOCGMS01	<0,20 μg/l	
Bromometano (4)(1)(2)	W-VOCGMS01	<1,0 μg/l	
cis-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	25,3 μg/l	±43%
	W-VOCGMS01	25,5 μg/l <1,0 μg/l	±4070
cis-1,3-dicloropropeno (4)(1)(2) Clorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 μg/l	

Boletim Analítico: 2021/04065 Versão: 1.0 Boletim Definitivo

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Cloroetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Clorofórmio (4)(1)(2)	W-VOCGMS01	<0,30 µg/l	
Clorometano (4)(1)(2)	W-VOCGMS01	<10,0 µg/l	
Dibromoclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Dibromometano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorodifluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Diclorometano (4)(1)(2)	W-VOCGMS01	<6,0 µg/l	
Tetraclorometano (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Tetracloroeteno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
trans-1,2-dicloroeteno (4)(1)(2)	W-VOCGMS01	0,34 µg/l	±43%
trans-1,3-dicloropropeno (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	
Tricloroeteno (4)(1)(2)	W-VOCGMS01	4,25 µg/l	±43%
Triclorofluormetano (4)(1)(2)	W-VOCGMS01	<1,0 µg/l	

V. N. de Gaia, 05 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.
- (7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultado é obtido desprezando os resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for

Wastewater.

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo pos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

the Examination of Water and

......

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Boletim Analítico: 2021/04066

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104395

Ponto de Amostragem: Piezómetro MW35

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 25 novembro 2021

Recepção: 26 novembro 2021 Início da Análise: 26 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Designação da Amostra:

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	9,19 mg/l O2	±6%
рН	ISO 10523:2008	6,1 a 19,55 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	138,1 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	19,6 °C	±3%
Nível Piezómetrico (1)	HPa002-15	1,87 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	215 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	3,10 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	16,8 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	87,1 mg/l HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	8,0 µg/l As	±19%
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 μg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	<1,0 µg/l Cu	
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	0,020 µg/l Hg	±24%
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 µg/l Ni	
Zinco (4)(1)	W-METAXFX1	31,1 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	27,2 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04066

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 μg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 µg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (1) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

Boletim Analítico: 2021/04087

Versão: 1.0 Boletim Definitivo

PETROGAL - Refinaria de Sines

Apartado 15 7520-952 Sines

Tipo Amostra: Águas Naturais Doces (Subterrâneas)

Designação da Amostra: Monitorização Rede Piezométrica de Sines - Aquífero

Superior

ID Colheita: 2104406

Ponto de Amostragem: Piezómetro MW48

Método de Amostragem: HPa001 (2021-10-22); EPA 542-S-02-001:2002

Amostragem por: LQA - Ambiente, Lda.

Data da Amostragem: 23 novembro 2021

Recepção: 24 novembro 2021 Início da Análise: 24 novembro 2021 Conclusão da Análise: 27 dezembro 2021

Requisitante:

Determinações Locais

Determinação	Método	Resultado	Incerteza
Oxigénio dissolvido (1)	SMEWW 4500-O G	3,20 mg/l O2	±6%
рН	ISO 10523:2008	5,9 a 22,50 °C Escala de Sorënsen	±7%
Potencial Redox (1)	SMEWW 2580-B	164,5 mV	±7%
Temperatura	SMEWW 2550B (23 ^a ed.)	22,5 °C	±3%
Nível Piezómetrico (1)	HPa002-15	3,71 m	±1%

Determinação	Método	Resultado	Incerteza
Condutividade Eléctrica (2)	NP EN 27888:1996	832 μS/cm	±17%
Nitratos (4)(1)(2)	W-NO3-SPC	3,26 mg/l NO3	
Sulfatos (4)(1)(2)	W-SO4-SPC	187 mg/l SO4	±30%
Hidrogenocarbonatos (4)(1)(2)	W-CO2F-CC2	145 mg/I HCO3	±12%
Arsénio (4)(1)	W-METAXFX1	<5,0 μg/l As	
Arsénio dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l As	
Cádmio (4)(1)	W-METAXFX1	<0,40 µg/l Cd	
Cádmio dissolvido (4)(1)(2)	W-METAXFL1	<0,40 µg/l Cd	
Chumbo (4)(1)	W-METAXFX1	<5,0 µg/l Pb	
Chumbo dissolvido (4)(1)(2)	W-METAXFL1	<5,0 μg/l Pb	
Cobre (4)(1)	W-METAXFX1	2,6 µg/l Cu	±19%
Cobre dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cu	
Crómio (4)(1)	W-METAXFX1	<1,0 µg/l Cr	
Crómio dissolvido (4)(1)(2)	W-METAXFL1	<1,0 µg/l Cr	
Mercúrio (4)(1)	W-HG-AFSFX	<0,010 µg/l Hg	
Mercúrio dissolvido (4)(1)(2)	W-HG-AFSFL	<0,010 µg/l Hg	
Níquel (4)(1)	W-METAXFX1	<2,0 µg/l Ni	
Níquel dissolvido (4)(1)(2)	W-METAXFL1	<2,0 μg/l Ni	
Zinco (4)(1)	W-METAXFX1	9,2 μg/l Zn	±19%
Zinco dissolvido (4)(1)(2)	W-METAXFL1	6,0 μg/l Zn	±19%
Benzeno (4)(1)	W-VOCGMS01	<0,20 µg/l	
Tolueno (4)(1)	W-VOCGMS01	<0,50 µg/l	
Etilbenzeno (4)(1)	W-VOCGMS01	<0,10 µg/l	
m,p-xileno (4)(1)	W-VOCGMS01	<0,20 µg/l	
o-xileno (4)(1)	W-VOCGMS01	<0,10 µg/l	
Xilenos (4)(1)(7)	W-VOCGMS01	<0,30 µg/l	
BTEX (soma) (4)(1)(7)	W-VOCGMS01	<1,10 µg/l	
1,2,3-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,2,4-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
1,3,5-triclorobenzeno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tetracloroetileno (4)(1)(2)	W-VOCGMS01	<0,20 µg/l	
Tricloroetileno (4)(1)(2)	W-VOCGMS01	<0,10 µg/l	
Éter terc-butiletílico (ETBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Éter terc-butilmetílico (MTBE) (4)(1)	W-VOCGMS01	<0,20 µg/l	
Hexaclorobenzeno (HCB) (4)(1)(2)	W-OCPECD01	<0,0050 µg/l	

Versão: 1.0 Boletim Definitivo

Boletim Analítico: 2021/04087

Determinações laboratoriais

Determinação	Método	Resultado	Incerteza
Hexaclorobutadieno (HCBD) (4)(1)(2)	W-OCPECD01	<0,010 µg/l	
Hidrocarbonetos Alifáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 µg/l	
Hidrocarbonetos Alifáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 μg/l	
Hidrocarbonetos Alifáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Alifáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 μg/l	
Hidrocarbonetos Alifáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Alifáticos Totais (C10C40) (4)(1) (7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Aromáticos >C10-C12 (4)(1)(2)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Aromáticos >C12-C16 (4)(1)(2)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Aromáticos >C16-C21 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C21-C30 (4)(1)(2)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Aromáticos >C30-C35 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos >C35-C40 (4)(1)(2)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Aromáticos Totais (C10-C40) (4) (1)(7)	W-TPHFID08	<95,0 μg/l	
Hidrocarbonetos Totais >C10-C12 (4)(1)	W-TPHFID08	<5,0 μg/l	
Hidrocarbonetos Totais >C12-C16 (4)(1)	W-TPHFID08	<30 µg/l	
Hidrocarbonetos Totais >C16-C21 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C21-C30 (4)(1)	W-TPHFID08	<20 µg/l	
Hidrocarbonetos Totais >C30-C35 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais >C35-C40 (4)(1)	W-TPHFID08	<10 µg/l	
Hidrocarbonetos Totais (C10-C40) (4)(1)(7)	W-TPHFID08	<95,0 μg/l	

V. N. de Gaia, 07 de janeiro de 2022 O Responsável do Laboratório Lúcia Soares de Sousa

(Este documento foi assinado digitalmente)

Notas:

- (0) Ensaio efetuado com compensação automática de temperatura
- (1) Ensaio não incluído no âmbito da acreditação.
- (2) Amostragem para o ensaio não incluída no âmbito da acreditação.
- (3) Amostragem não incluída no âmbito da acreditação.
- (4) Ensaio contratado a laboratório externo com ensaio acreditado.
- (5) Ensaio contratado a laboratório externo com ensaio não acreditado.

(7) Resultado obtido por cálculo, sendo que o LQ é obtido pelo somatório dos LQ parciais. Se um ou mais parciais forem quantificáveis, o resultados inferiores aos LQ parciais. Se o somatório dos parciais quantificáveis for ainda <LQ, o resultado é <LQ.

Em todos os resultados expressos na forma "<X" ou "≤X", "X" é o Limite de Quantificação (LQ) do método analítico.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

Quando efetuada, na avaliação de conformidade com os Valores de Referência, a regra de decisão não contempla a incerteza associada à medição.

As incertezas expandidas das medições (exceto para as medições locais), foram calculadas com base nas incertezas padrão combinadas, multiplicadas por um fator de expansão k=2 para uma distribuição normal correspondente a um nível de confiança de 95%.

Quando a amostragem está fora do âmbito da acreditação ou é da responsabilidade do cliente, a incerteza refere-se apenas à determinação analítica.

NP - Norma Portuguesa; EN - Norma Europeia; ISO - International Organization for Standardization; SMEWW - Standard Methods for the Examination of Water and Wastewater.

O boletim analítico refere-se apenas à amostra analisada, não podendo ser generalizado a processos, partidas ou lotes, salvo nos casos especificamente mencionados. Este documento é considerado confidencial, não podendo ser parcialmente reproduzido, nem ser utilizado para fins publicitários, sem a nossa prévia autorização escrita.

<u>Anexo 5</u>: Log´s das sondagens e piezómetros adicionais instalados na zona HVO (PZ-BH1; PZ-BH3; PZ-BH-4; PZ-BH6 e PZ-BH9).

Drill Rig

GEO-032 AVS DRILL

Initial Date

16-08-2022

Final Date

16-08-2022

Observações:

GEOTECNHICAL SURVEY

Client:

Coordinates

P= -190362,300

PIEZOMETER PZ-BH1

Job Number

29422

Elevation

Z= 41,543

Page de Logged By

Paulo Correia

Job:

Dip

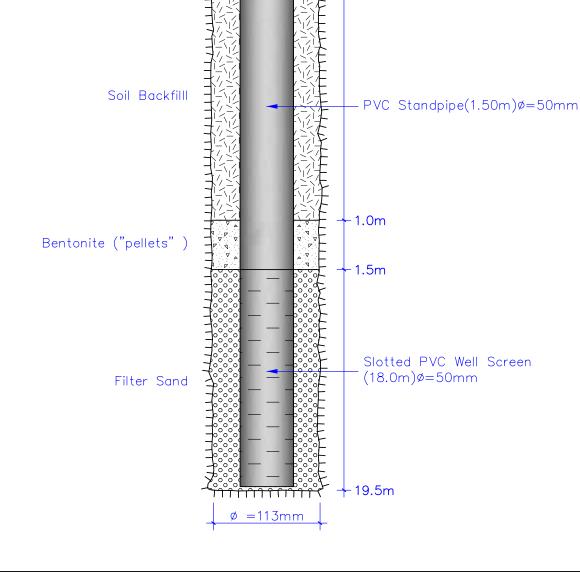
Final Depth (m)

19.5

Designer

Nuno Neto

HVO PROJECT


M= - 59119,897

	Measurement	Depht. (m)	Measurement	Measurement								
	24-08-2022	2.74	02-09-2022	19-09-2022								
	25-08-2022	2.74	05-09-2022	05-09-2022 2.79								
	26-08-2022	2.72	06-09-2022	2.79	21-09-2022							
	29-08-2022	2.75	07-09-2022	2.78								
	30-08-2022	2.75	08-09-2022	2.78								
	31-08-2022	2.78	09-09-2022	2.79								
I	01-09-2022	2.79	16-09-2022	2.80								
	Ground level											

2.78 2.81 2.83

Depht. (m)

Protective Metalic Cover

Rua D. Nuno Alvares Pereira, N.* 4 Bloco 4 - Parque Oriente - 2699-501 Bobadela LRS PORTUGAL Telefone: (+351) 219 958 000 - Telefax: (+351) 219 958 001 E-mail: mail@geocontrole.pt / Internet: www.geocontrole.pt

Drill Rig

GEO-032 AVS DRILL

Initial Date

26-08-2022

Final Date

26-08-2022

GEOTECNHICAL SURVEY

Client:

galp (6)

PIEZOMETER

PZ-BH3

Job Number 29422

Page

HVO PROJECT

Job: Final Depth (m) 19.5

Designer Nuno Neto

Dip

Coordinates P= -190375.927

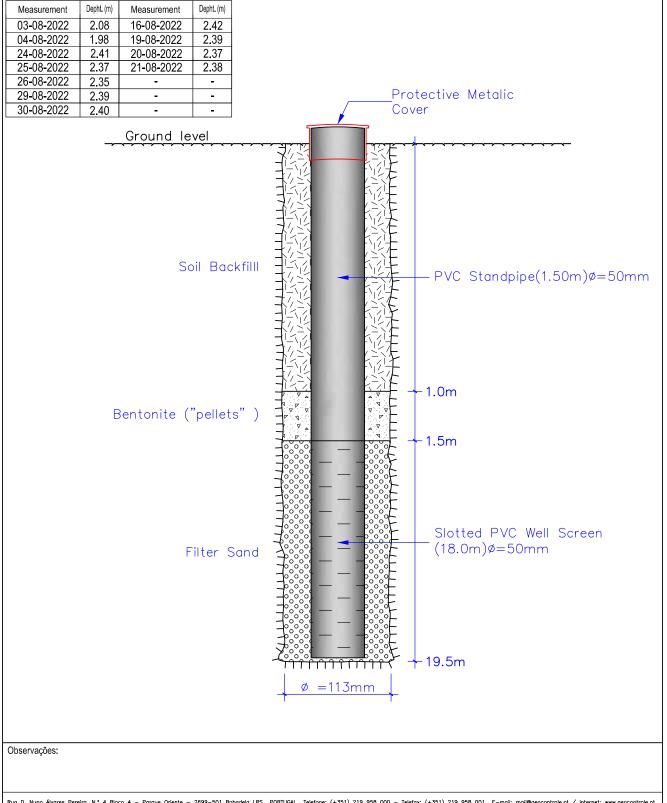
Logged By Elevation Z= 42.172 Paulo Correia

Depht. (m) Depht. (m) Measurement Measurement 31-08-2022 3.80 09-09-2022 3.79 01-09-2022 3.82 16-09-2022 3.78 3.80 02-09-2022 3.74 19-09-2022 05-09-2022 3.80 20-09-2022 3.80 06-09-2022 3.77 21-09-2022 3.81 Protective Metalic 07-09-2022 3.79 08-09-2022 Cover 3.80 Ground level Soil Backfilll PVC Standpipe(1.50m)ø=50mm - 1.0m Bentonite ("pellets") - 1.5m Slotted PVC Well Screen $(18.0m)\emptyset = 50mm$ Filter Sand + 19.5m $\emptyset = 113 \text{mm}$ Observações:

Rua D. Nuno Ávares Pereira, N.* 4 Bloco 4 - Parque Oriente - 2699-501 Bobadela LRS PORTUGAL Telefone: (+351) 219 958 000 - Telefax: (+351) 219 958 001 E-mail: mail@gecontrole.pt / Internet: www.gecontrole.pt

GEOTECNHICAL SURVEY

Client:


galp 🕜

PIEZOMETER PZ-BH4

Job Number

29422

			Job:						
Initial Date	Daill Dia	Final Depth (m)	0001	HVO PROJECT					
27-07-2022	Drill Rig	19.5		1 de	1				
Final Date	GEO-032 AVS DRILL	Designer	Dip	Coordinates		Elevation	Logged By		
27-07-2022	GEO-032 AV3 DNILL	Nuno Neto	90°	M= - 59087.952	P= -190439.432	Z= 40.772	Paulo Corr	eia	

GEOTECNHICAL SURVEY

Client:

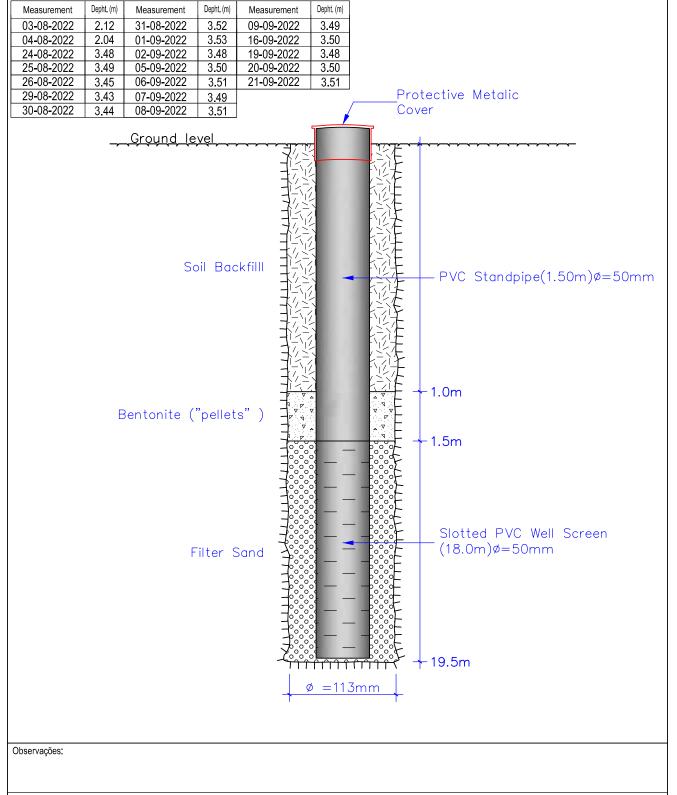
Job:

PIEZOMETER

PZ-BH6

Job Number 29422

HVO PROJECT


Initial Date Final Depth (m) Drill Rig 29-07-2022 19.5 Designer Final Date GEO-032 AVS DRILL 29-07-2022 Nuno Neto

Dip 90°

Coordinates M= - 58971.574 P=-190529,410

Elevation Z= 42.175

Logged By Paulo Correia

Rua D. Nuno Ávares Pereira, N.º 4 Bloco 4 - Parque Oriente - 2699-501 Bobadela LRS PORTUGAL Telefone: (+351) 219 958 000 - Telefax: (+351) 219 958 001 E-mail: mail@geocontrole.pt / Internet: www.geocontrole.pt

GEOTECNHICAL SURVEY

Client:

P=-190138.965

PIEZOMETER

PZ-BH9

Job Number 29422

Paulo Correia

Initial Date
14-09-2022
Final Date
GEO-032 AVS DRILL

14-09-2022

Observações:

Final Depth (m)
19.5
Designer
Nuno Neto

Dip Coordinates

M= - 58816.301

Page
1 de 1
Logged By

Z= 42.520

Measurement	Depht. (m)	Measurement	Depht. (m)		
16-09-2022	4.11	-	-		
19-09-2022	4.13	-	-		
20-09-2022	4.10	-	-		
21-09-2022	4.10	-	-		
-	-	-	-		
-	-	-	-		Protective Metalic
-	-	-	-	<i>,</i>	Cover
	B	Bentonite ('	oil Backfilll	######################################	PVC Standpipe(1.50m)ø=50mm -1.0m -1.5m Slotted PVC Well Screen (18.0m)ø=50mm

Rua D. Nuno Álvares Pereira, N.º 4 Bloco 4 - Parque Oriente - 2699-501 Bobadela LRS PORTUGAL Telefone: (+351) 219 958 000 - Telefox: (+351) 219 958 001 E-mail: mail@geocontrole.pt / Internet: www.geocontrole.pt

Anexo 6: Resultados analíticos análises águas subterrâneas recolhidas na zona HVO;

Avaliação da Qualida	de das Águas Subt	errâneas								
GALP	Energia, S. A.									
	HVO									
		Codificaci	ão do pont	to do amo	ctragom:	D7 D111	D7 D113	D7 D114	D7 D116	D7 D110
Corre	espondência com pon		ão do pont			PZ-BH1	PZ-BH3	PZ-BH4	PZ-BH6	PZ-BH9
Com	espondencia com pon	tos de alliosti	ageili de c		calização:					
				Georrefere						_
					amostra:	Água Subterrânea	Água Subterrânea	Água Subterrânea	Água Subterrânea	Água Subterrá
			M	laterial am		Agua Subterranea	Agua Subterranea	Agua Subterranea	Agua Subterranea	Agua Subterra
		Data da a	mostrager			2022-11-16	2022-11-16	2022-11-16	2022-11-16	2022-11-1
			ndidade de			2022 11 10	2022 11 10	2022 11 10	2022 11 10	2022 11 1
Contaminantes	Unidades	VR (1)	VOR (1)	VEI (1)	VFN (1)	VA	VA	VA	VA	VA
Contaminantes	Unidades			•	1		l	'	1	1
Metais e outros elementos químicos										
lumínio rsénio	μg/I Al	0,01				49,5 0,0012	<0,0010	560 0,0042	586 <0,0010	1780 <0,0010
ádmio	mg/l As mg/l Cd	0,005	+			<0,0012	<0,0010	<0,0042	<0,0010	<0,0010
humbo	mg/I Pb	0,01	_			<0,0010	0,0019	0,0079	0,0157	0,0104
obalto	mg/I Co	10,00				0,0023	<0,0020	0,0106	<0,0020	<0,0020
obre	mg/l Cu	2,00				0,0013	0,0059	0,0045	0,0023	0,0347
rómio	μg/I Cr	50,00	+			<1,0	1,2	<1,0	<1,0	4,2
erro Ianganês	μg/l Fe μg/l Mn	200,00 50,00				5440 307	2620 59,9	62900 230	427	12200 334
lercúrio	mg/l Hg	0,001				<0,000010	<0,00010	<0,00010	<0,000010	<0,00001
íquel	μg/l Ni	20,00				2,5	4,2	6,6	2,4	3,2
rata	μg/l Ag	10,00	4			<1,0	<1,0	<1,0	<1,0	<1,0
elénio itânio	μg/l Se	30,00				1,6	2,2	<1,0	<1,0	<1,0
itânio anádio	μg/l Ti mg/l V	1,00				2,6 0,0022	9,3 0,0018	3,4 0,0015	1,8 0,0073	9,2 0,0078
inco	μg/l Zn	50,00				22,1	21,4	20,0	12,5	40,8
ompostos aromáticos										
lidrocarbonetos monoaromáticos										
enzeno	μg/I	1,00	1			<0,20	<0,20	<0,20	<0,20	<0,20
olueno tilbenzeno	μg/l	7,00 4,00	+			<0,50 <0,10	<0,50 <0,10	<0,50 <0,10	<0,50 <0,10	<0,50 <0,10
neta- & para-Xileno	μg/l μg/l	-,00				<0,10	<0,10	<0,10	<0,10	<0,10
rto-Xileno	µg/l					<0,10	<0,10	<0,10	<0,10	<0,10
oma de Xilenos	μg/l	2,40				<0,30	<0,30	<0,30	<0,30	<0,30
oma de BTEX	μg/l	_				<1,10	<1,10	<1,10	<1,10	<1,10
lidrocarbonetos aromáticos policíclicos (PAH)	ug/l		_			<0,370	z0 370	<0,370	<0,370	±0.270
oma de PAH cenafteno	μg/l μg/l	0,06	+			<0,010	<0,370 <0,010	<0,010	<0,010	<0,370 <0,010
cenaftileno	µg/l	1,30				<0,010	<0,010	<0,010	<0,010	<0,010
ntraceno	μg/l	0,10				<0,020	<0,020	<0,020	<0,020	<0,020
enzo(a)pireno	μg/l	0,01				<0,0200	<0,0200	<0,0200	<0,0200	<0,0200
enzo(a)antraceno enzo(ghi)perileno	μg/l μg/l	0,0001	1			<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
enzo(b)fluoranteno	µg/I		_			<0,010	<0,010	<0,010	<0,010	<0,010
enzo(k)fluoranteno	μg/l	0,10				<0,010	<0,010	<0,010	<0,010	<0,010
ndeno(1,2,3-cd)pireno	μg/l		_			<0,010	<0,010	<0,010	<0,010	<0,010
riseno ibenzo(a,h)antraceno	μg/l	0,003	1			<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
enantreno	μg/l μg/l	0,0014	+	1		<0,010	<0,010	<0,010	<0,010	<0,010
luoranteno	µg/l	0,10	1			<0,030	<0,030	<0,030	<0,030	<0,030
luoreno	μg/l	1,50				<0,020	<0,020	<0,020	<0,020	<0,020
aftaleno	µg/l	2,40	1			<0,100	<0,100	<0,100	<0,100	<0,100
ireno lidrocarbonetos halogenados	μg/l	0,0023	_			<0,060	<0,060	<0,060	<0,060	<0,060
lidrocarbonetos halogenados voláteis	_	_			_	_	_	_	_	
etracloroetileno	μg/I	10.00	$\overline{}$			<0,20	<0,20	<0,20	<0,20	<0,20
ricloroetileno	μg/I	10,00				<0,10	<0,10	<0,10	<0,10	<0,10
lidrocarbonetos de petróleo (TPH)										
idrocarbonetos de petróleo C ₅ -C ₁₀ idrocarbonetos de petróleo C _{>10} -C ₄₀	μg/l	10,00				<25,0	<25,0 56.8	<25,0	<25,0 <50.0	<25,0
rários	μg/l	10,00				61,6	56,8	<50,0	<50,0	<50,0
H (medição local)	Escala de Sorënser	5,5-9,0				5,9 a 20,8°C	6,0 a 21,1°C	5,7 a 19,5°C	6,0 a 20,6°C	6,4 a 23,7
ondutividade, a 20°C (medição local)	μS/cm	2 500,00				1189	1258	1181	310	351
xigénio dissolvido (medição local)	% saturação O2	70				15	20	20	93	20
arbono Orgânico Total mónia	mg/I C mg/I NH4	0,50	+			6,51 0,161	3,74 <0,050	2,74 <0,050	1,08 <0,050	8,88 0,093
itratos	mg/I NO3	50,00				1,53	1,96	<0,050	0,28	2,55
itritos	mg/I NO2	,00				0,0524	<0,0050	<0,0050	<0,0050	0,0102
loretos	mg/l Cl	250,00				115	157	390	166	47,4
ulfatos	mg/I SO4	250,00	_			499	514	90,1	109	16,8
ósforo Total osfatos	mg/l P mg/l P2O5	0,13				<0,030 <0,030	<0,030 <0,030	<0,030 <0,030	0,067 <0,030	0,161 <0,030
ter terc-butílico e metílico (MTBE)	μg/I	0,65				<0,030	<0,030	<0,030	<0,20	<0,030
egenda:										
Q - Limite de quantificação do método .d Não determinado			+	-		I				-
A - Valor amostrado			+							1
EI - Valor do estado inicial										
FN - Valor de fundo natural										
OR - Valor objetivo de remediação R - Valor de referência		-	+	-						-
n valui de referencia			+	-						1
otas de preenchimento:			-		-					1
reencher, conforme aplicável, a coluna referente aos VR,	. VOR. VELOU VEN 🗚	liminar as res	tantes							1
iserir tantas colunas quantas as amostras de solo recolhi				por data	de					1
liminar linhas correspondentes aos contaminantes não a										
			_				I			1
·										
Fonte [indicar a fonte (incluindo, p.e., a tabela selecion	ada, o uso do solo, a s	ua textura e a	a utilização	o, ou não,	de água s	ubterrânea, se apli	cáveis)]:			
·		ua textura e a	a utilização	o, ou não,	de água s	subterrânea, se apli	cáveis)]:			