




Maciço	Nó	РК	Localização		Dimensões da peça - Tê (mm)		Curva		Cotas			Pensaio Pens	Pensaio	secção	Impulso	Dimensões do maciço (m)				
			М	P	DN1	DN2	DN3	DN (mm)	angulo (°) (E)	Terreno	Eixo da Conduta	piezom. estática	(m.c.a.) (ki		m²	(kN)	A	В	O	Observações
MC1	N02	1+073,33	39 427,93	-143 345,44	2000	2000	200	-	-	202,36	200,33	224,99	37,00	362,93	0,03	11,40	3,00	1,20	3,00	Derivação para conduta de rega
MC2	N03	1+645,60	39 503,97	-142 778,90	2000	2000	150	-	-	200,62	198,12	224,99	40,31	395,39	0,02	6,99	3,00	1,15	3,00	Derivação para conduta de rega
MC3	N04	2+151,85	39 600,40	-142 289,05	2000	2000	250	-	-	206,38	204,32	224,99	31,01	304,17	0,05	14,93	3,00	1,25	3,00	Derivação para conduta de rega
MC4	N05	4+071,95	39 792,62	-140 409,75	2000	2000	250	-	-	177,21	175,06	224,99	74,90	734,75	0,05	36,07	3,00	1,25	3,00	Derivação para conduta de rega
MC5	N06	5+404,82	39 939,17	-139 089,45	2000	1800	350	-	-	153,33	150,96	224,99	111,04	1089,31	0,10	104,80	2,80	1,35	2,80	Derivação para conduta de rega
MC6	N07	7+749,89	41 455,38	-137 979,20	1800	1800	600	-	-	197,74	195,31	224,99	44,52	436,70	0,28	123,47	2,80	1,60	2,80	Derivação para conduta de rega
MC7	N0612	7+740,98	41 448,66	-137 985,03	-	-	-	1800	22,50	197,66	195,26	224,99	44,60	437,55	2,54	434,44	3,00	1,44	2,80	Curva Horizontal
MC9	N0707	8+529,84	42 039,55	-137 463,91	-	-	-	1800	10,80	191,79	188,33	224,99	55,00	539,51	2,54	258,40	2,80	1,50	2,94	Curva Vertical (impulso descendente)
MC11	N0712	9+213,88	42 516,51	-136 977,84	-	-	-	1800	8,00	201,81	199,50	224,99	38,24	375,09	2,54	133,16	2,80	1,50	2,91	Curva Vertical (impulso descendente)
MC12	N0715	9+675,59	42 763,97	-136 588,05	-	-		1800	30,00	212,48	209,43	224,99	23,34	228,98	2,54	301,62	3,28	1,40	2,80	Curva Horizontal

			MAT	ERIAIS	3							
MATERIAL	ELEMENTO	Classe de Resistência	Classe de Exposição	Classe do teor de cloretos	Classe de Abaixamento	Máxima Dimensão do Agregado	Máxima Razão Água/Cimento	Mínima Dosagem de Cimento (kg/m ³)	Recobrimento Nominal (mm)			
	Em geral	C25/30	XC2(P)	CI 0,2	S 3	Dmáx 25	0.65	240	40			
BETÁO	Em selagem de equipamentos	C35/45	XC4(P)	CI 0,2	S3	Dmáx 10	0.45	320	35			
	Regularização e selagem	C12/15	-	-	-	-	-	-	-			
AÇO EM ARMADURAS	Em geral	A500NR										
AÇO EM ELEMENTOS	Em perfis e chapas	S 235 JR										
METÁLICOS	Em parafusos e chumbadouros	CI 8.8										

PROCESL

PLANEGE CENOR

Nº ORDEM:

FOLHA: 1/1

Empresa de Desenvolvimento e Infra-estruturas do Alqueva, S.A.

019/03 | Manuel Valadas | N° EDIA :14C20PE_RegMn_D208_F001aF001_RPT1AduMacicos_PE_R00_20190315

PROJETO DE EXECUÇÃO E ESTUDO DE IMPACTE AMBIENTAL DO CIRCUITO HIDRÁULICO DE REGUENGOS DE MONSARAZ E RESPETIVO BLOCO DE REGA

119/03 Manuel Valadas Cód : 16113-PE- 01 - 02 - EST-DES-208

E RESPETIVO BLOCO DE REGA

Conduta adutora - Troço 1
Maciços de amarração
Definição e betão armado

Projectou

2019/03 Manuel Valadas Substitui des. nº
Desenhou

2019/03 Marta Duarte Substituido por des. nº
1/40