Enquadramento

A Portaria nº 190-A/2018, de 2 de Julho, prevê que a altura das chaminés de uma instalação seja determinada através da metodologia de cálculo proposta no seu Anexo I, e de um estudo de dispersão, obrigatório em situações específicas e devidamente identificadas no seu Anexo II, tal como previsto no n.º 1 do artigo 31º do Decreto-Lei n.º 78/2004, de 3 de Abril.

Port. 190-A/2018 de 3 de Julho ANEXO II Situações que requerem o recurso a estudos de dispersão

- a) Instalações que integrem a categoria das grandes instalações de combustão, na acepção do capitulo III do Decreto-Lei n.o 127/2013, de 30 de Agosto;
- b) Instalações localizadas ou a localizar em áreas protegidas ou em zonas de proteção especial assim consideradas nos termos da legislação aplicável;
- c) Instalações localizadas ou a localizar em áreas em que os valores limite ou os limiares de alerta da qualidade do ar sejam susceptíveis de violação;
- d) Quaisquer outras instalações, independentemente da sua localização, cujos caudais de gases ultrapassem, pelo menos, um dos valores seguintes:
- i) 200 kg.h-1 de dióxido de enxofre;
- ii) 200 kg.h-1 de óxidos de azoto;
- iii) 150 kg.h-1 de compostos orgânicos ou 20 kg.h-1 no caso de compostos orgânicos classificados como substâncias perigosas;
- iv) 50 kg.h-1 de partículas;
- v) 50 kg.h-1 de compostos de cloro;
- vi) 25 kg.h-1 de flúor e compostos de flúor;
- vii) 1 kg.h-1 de metais para os quais estejam definidos valores limite de emissão (VLE).

Parte 1 – Determinação da Altura das Chaminés através da Fórmula geral

1) METODOLOGIA DE CÁLCULO

- ETAPA 1 Determinação do Hp (expresso em metros), em função das características do efluente.
- ETAPA 2 Correcção do Hp (expresso em metros), devido à influência de outras chaminés existentes na mesma instalação.

ETAPA 3 - Determinação do Hc (expresso em metros), em função das características da envolvente.

ETAPA 4 – Determinação de H que corresponde ao maior valor entre Hp e Hc.

2) APLICAÇÃO

ETAPA 1 - Determinação do Hp (expresso em metros), em função das características do efluente

$$Hp = S^{1/2} \times \frac{1}{Q \times \Delta T}^{1/6}$$

(2)

$$S = \frac{F \times q}{C}$$

(3)

$$C = C_R - C_F$$

em que:

H = altura final da chaminé em causa (expressa em metros);

Q = caudal volúmico dos gases (expresso em m3 /h), à Temperatura (T) de saída dos gases para a atmosfera, com a instalação a funcionar à potência nominal:

 ΔT = diferença entre a T dos gases (à saída da chaminé) e a T média anual típica da região (expressas em kelvin). Se $\Delta T \leq 50$, considera-se $\Delta T = 50$;

F= coeficiente de correcção (F= 340 para gases; F= 680 para partículas); q = caudal mássico máximo passível de emissão do poluente considerado (expresso em kg/h);

C = diferença entre CR - CF (expressa em mg/Nm3)

CR= concentração de referência

CR (partículas) = 0.150 mg/m3

CR (NOx) = 0.140 mg/ m3

 $CR (SO2) = 0.100 \text{ mg/m}^3$

CF = média anual da concentração do poluente considerado medida no local.

Na ausência de dados de avaliação da qualidade do ar para essa região, devem usar-se os seguintes valores (expressos em mg/m3):

Zona rural	Zona urbana/industrial
C_F (particulas) = 0,030 mg m ⁻³	C_F (particulas) = 0,050 mg m ⁻³
Cr(NO _x) = 0,020 mg m ⁻³	$C_F(NOx) = 0.040 \text{ mg m}^{-3}$
$C_F(SO_2) = 0.015 \text{ mg m}^{-3}$	$C_F(SO2) = 0.030 \text{ mg m}^{-3}$

Sempre que se verifique a emissão de mais de um poluente, determinam-se valores de S para cada um dos poluentes presentes no efluente. A altura Hp será determinada

tomando o maior valor de S obtido. Nos casos em que não estejam fixados valores de CR para algum dos poluentes emitidos pela chaminé, não sendo possível determinar o parâmetro C, considera-se Hp= 10 metros.

Parâmetro	Unidades	Valor	Notas
Tgases	(K)	289.0	
Tmédia	(K)	288.2	
ΔΤ	(K)	0.8	
ΔT (ΔT<50)	K	50	
CR (particulas)	mg/m3	0.15	
CF (particulas)	mg/m3	0.05	
С		0.10	
Fparticulas	=	680	
q	(kg/h)	0.5	
S		3400	
Q	(m3/h)	3500	
Нр	m	7.80	

ETAPA 2 - Correcção do Hp devido à influência de outras chaminés existentes na mesma instalação

Sendo a altura de duas chaminés (i) e (j) respetivamente hi e hj, calculadas de acordo com a equação 1, serão consideradas dependentes se se verificar em simultâneo as três seguintes condições:

- a distância entre os eixos das duas chaminés for inferior à soma hi + hj + 10 (em metros);
- hi for superior à metade de hj;
- hi for superior à metade de hi.

Nota: No caso da dependência com chaminés existentes, considera -se a altura real das mesmas

Parâmetro	Unidades	FF1	FF2
Tgases	(K)	291	289
Tmédia	(K)	288.2	288.2
ΔΤ	(K)	2.8	0.8
ΔT (ΔT<50)	K	50	50
CR (particulas)	mg/m3	0.15	0.15
CF (particulas)	mg/m3	0.05	0.05

С		0.10	0.10
Fparticulas	-	680	680
q	(kg/h)	0.5	0.5
S		3400	
Q	(m3/h)	76676	3500
Нр	m	hi=4.66	hj=7.80

distância entre eixos (m)	191.0
hi (m)	4.7
hj (m)	7.8
hi+hj+10	22.5
hj/2	3.9
hi/2	2.3

Verificação das condições simultâ	neas		
distância entre os eixos das duas chaminés < hi+hj+10	191.0	22.5	FALSO
hi>hj/2	4.7	3.9	VERDADEIRO
hj> hi/2	7.8	2.3	VERDADEIRO
Não são verificadas as 3 condições simultâneas, log	ıo são i	ndepe	endentes

U 🗠	100	70
I DD	III	7.0

ETAPA 3 - Determinação de Hc (expresso em metros), em função das características da envolvente

Se na vizinhança* de uma determinada chaminé existirem obstáculos próximos, a altura Hc deve ser calculada através da equação:

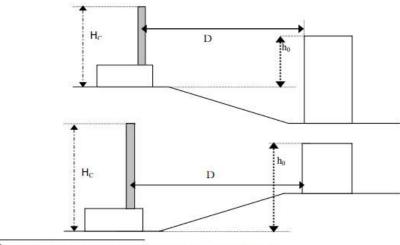
(4)
$$Hc = h_0 + 3 - \frac{(2 \times D)}{(5 \times h_0)}$$

Obstáculo próximo é qualquer obstáculo situado na vizinhança da fonte de emissão (incluindo o próprio edifício de implantação da chaminé) e que obedeça em simultâneo

às seguintes condições:

$$h_0 \ge {}^D/_5$$

(6)


$$L \ge 1 + \frac{(14 \times D)}{300}$$

em que:

D = distância, em metros, medida na horizontal entre a chaminé e o ponto mais elevado do obstáculo;

h0 = altura do obstáculo, em metros, medida a partir da cota do solo na base de implantação da chaminé;

L= largura do obstáculo expressa em metros.

vizinhança: área circundante à fonte emissora num raio de 300 metros

•
$$h_0 \ge D/_{5} \Leftrightarrow 12 \ge \frac{25}{5} \Leftrightarrow 12 \ge 5$$

•
$$h_0 \ge \frac{D}{5} \Leftrightarrow 12 \ge \frac{25}{5} \Leftrightarrow 12 \ge 5 \checkmark$$

• $L \ge 1 + \frac{(14 \times D)}{300} \Leftrightarrow 50 \ge 1 + \frac{(14 \times 25)}{300} \Leftrightarrow 50 \ge 2.17 \checkmark$

Pela equação 5,

h ₀	m	12
D	m	25
Hc	m	14.16

ETAPA 4 – Determinação de H (expresso em metros)

O valor de H é obtido, considerando o maior valor entre Hp (função das características do efluente e da dependência com outras fontes, caso exista) e Hc (função das características da envolvente), sendo que, , a diferença de cotas, entre o topo de qualquer chaminé e a mais elevada das cumeeiras dos telhados do edifício em que está implantada não poderá ser inferior a 3 metros, sabendo que a altura mínima resultante nunca poderá ser inferior a 10 metros

Нр	m	7.80
Нс	m	14.16

П

Conclusões:

A altura da chaminé instalada é de 17 m, sendo superior a 14.16 m do Hc. Pelo que se pode concluir que cumpre as condições da portaria nº 190-A/2018.