Vale de Mafra, Lda.

GUIA DA EMPRESA

ÍNDICE

ÍNDICE	2
_	
DESCRIÇÃO DA EMPRESA	3
~~~	
PROCESSO DE ANODIZAÇÃO	4
FLUXOGRAMA DO PROCESSO	5
ETAPAS DO PROCESSO	6
DESENGORDURAMENTO	6
SATINAGEM	7
Neutralização	9
ANODIZAÇÃO	10
Coloração Electrolítica	12
SELAGEM A FRIO	13
LAVAGENS DO PROCESSO	15
ESQUEMA DA LINHA	17
PROCESSO DE LACAGEM	18
FLUXOGRAMA DO PROCESSO	19
ETAPAS DO PROCESSO	20
Pré-Tratamento	20
DESENGORDURAMENTO	20
DESOXIDAÇÃO	21
CONVERSÃO QUÍMICA	22
LAVAGENS	23
SECAGEM	24
PINTURA	24
POLIMERIZAÇÃO	25



# **DESCRIÇÃO DA EMPRESA**

A empresa Vale de Mafra, Lda., situa-se na Rua Manuel Francisco Branco, no lugar da Charneca, freguesia de Venda do Pinheiro, concelho de Mafra, distrito de Lisboa.

A Vale de Mafra, Lda. presta serviços na área de tratamento de superfícies, nomeadamente Anodização e Lacagem.

A linha de Anodização engloba ainda uma pequena unidade de Polimento.

A nível de Lacagem disponibiliza as várias cores existentes no mercado, desde lacados normais, até mates, ou texturados, em diversas cores, incluindo obviamente as cores RAL.

Em termos de Anodização, são disponíveis dois tipos de acabamento: Polido ou Acetinado, em 5 cores distintas, a saber:

natural	•
inox	•
bronze médio	•
castanho-escuro	•
preto	•

Os materiais tratados pela empresa Vale de Mafra, Lda. são regra geral em alumínio, sob a forma de perfis, chapas ou acessórios, ou ainda peças especiais, nomeadamente, grelhas, portões, entre outros.



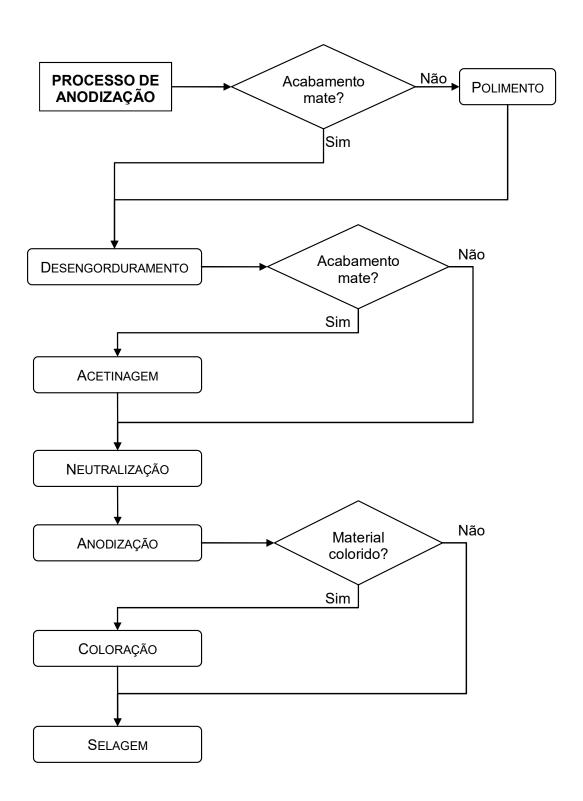
# PROCESSO DE ANODIZAÇÃO

O processo de anodização proporciona ao alumínio assim tratado uma superfície decorativa, repelente à sujidade e resistente à corrosão.

O tratamento superficial do alumínio é executado por razões estéticas e decorativas, mas principalmente para tornar o material mais resistente à corrosão e ao desgaste.

O alumínio tem à sua superfície uma camada natural de óxido de alumínio, ou alumina, muito fina (0,01 a 0,1µm) que pode ser destruída através de ataque químico ou mecânico, ficando a superfície exposta à corrosão. Através da anodização consegue-se aumentar a espessura de camada de alumina de modo a que fique 200 a 2000 vezes mais espessa do que a que é formada naturalmente. O alumínio assim tratado terá uma dureza e resistências superiores ao não tratado.

Por outro lado o aspecto da superfície do alumínio pode ser melhorado através de tratamentos mecânicos, ou químicos, nomeadamente polimento ou acetinagem, que conferem ao material um acabamento brilhante, ou mate, respectivamente.


O alumínio anodizado pode ser também colorido. Existem vários tipos de coloração (adsorção, interferência, multicoloração) mas a que existe na empresa Vale de Mafra é a coloração electrolítica, com recurso a sais de estanho, que permite colorir o material em tons que vão desde o inox, aos bronzes, castanhos e ao preto.

Portanto ao alumínio que vai ser anodizado terá que se conferir um acabamento (polido – brilhante ou acetinado – mate) e uma cor (0 até 4).

De seguida o alumínio irá passar por várias etapas até que o processo de anodização fique concluído e que o material possa ser embalado e preparado para expedição. São essas etapas que se irão descrever de seguida.



# **FLUXOGRAMA DO PROCESSO**





# **ETAPAS DO PROCESSO**

De notar que entre cada etapa do processo existem lavagens, 1 a 2 normalmente, de forma a minimizar contaminações entre os banhos.

### **DESENGORDURAMENTO**

É o primeiro passo do processo de anodização, e tem por objectivo a eliminação de todos os vestígios de sujidades e gorduras, removendo ainda óxidos manchas e contaminantes da superfície do material.

Pode ser de natureza alcalina, ou ácida; sendo que o processo alcalino necessita de aquecimento, ao passo que o ácido pode funcionar à temperatura ambiente, como é o caso da empresa Vale de Mafra.

Caso o desengorduramento não seja correctamente efectuado, tal será notado nas etapas posteriores, com arrastes de gordura nos banhos ou manchas no material.

Um cuidado maior terá que ser tido no caso de material polido (devido aos resíduos de pasta de polir que ficam presos nas reentrâncias do material); também o material com rasgos necessita de um cuidado especial, visto que vem normalmente com muito óleo nessas zonas, devendo o tempo de permanência ser superior.

TINA	1		
VOLUME DA TINA	11250L (7,5 x 2,0 x 0,75)		
PRODUTO USADO	GARDOCLEAN T 5320 (CHEMETALL)		
CONCENTRAÇÃO	Montagem a 40g/L; Alcalinidade Total: 26 a 27 pontos pH Muito Alcalino (12 – 14)		
TEMPERATURA	40 a 60°C		
TEMPO DE IMERSÃO	9 a 11min (consoante o tipo e sujidade do material)		
CARACTERÍSTICAS	Banho c/ aquecimento através de serpentina, situada de lado no tanque, onde circula água quente;		
	Com agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina		
Controlo	2x/ semana da Alcalinidade Total		
REJEIÇÃO DO BANHO	Se criar lama, decanta-se o banho		

### SATINAGEM

Depois de limpa e desengordurada, a superfície do alumínio tem que ser desoxidada antes de a anodização poder tomar lugar.

A remoção da camada de óxido natural do alumínio é efectuada numa etapa denominada Satinagem, ou Acetinagem, que consiste num banho de Soda Cáustica, que em conjunto com um aditivo complexante irá conferir ao material um aspecto acetinado, ou mate, homogeneizando a superfície deixando-a mais lisa.

Nesta etapa dá-se uma reacção química exotérmica (com libertação de calor) entre o alumínio e a soda cáustica a qual irá provocar a libertação de hidrogénio gasoso, e aluminato de sódio, o qual por hidrólise origina hidróxido de alumínio, produzido sob a forma de lama. O aditivo complexante tem por função evitar que o hidróxido de alumínio se forme, uma vez que é um composto de difícil remoção do banho.

Para além do aditivo, há que ter em atenção a temperatura, a concentração de soda livre e o teor de alumínio dissolvido, uma vez que estes 3 factores, conjugados com o tempo de permanência do alumínio no banho permitem atingir um equilíbrio entre o bom e o mau acabamento.

TINA	4		
VOLUME DA TINA	12000L (7,5 x 2,0 x 0,8)		
PRODUTOS USADOS	Soda Cáustica a 50%		
	GARDOBOND ADDITIVE H 7283 (CHEMETALL)		
CONCENTRAÇÃO	Soda Cáustica: 100 a 120g/L		
	Alumínio: 135 a 160g/L		
	Razão Soda/ Alumínio: 0,72 a 0,78		
TEMPERATURA	60 a 70°C		
TEMPO DE IMERSÃO	10 a 15min, depende da temperatura e da concentração do banho		
CARACTERÍSTICAS	pH Muito Alcalino (14)		
	Banho c/ aquecimento através de queimador, situada no fundo da tina; tem circuito de arrefecimento com água a circular por uma serpentina lateral		
	Agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina		
CONTROLO	Diário de Concentração de Soda e de Alumínio e razão Soda/Alumínio		
REJEIÇÃO DO BANHO	Quando começa a criar lama no fundo da tina, decanta-se o banho e removem-se as lamas, tentando aproveitar o máximo de banho possível		



No quadro seguinte tem-se a relação entre os vários parâmetros e a sua influência no acabamento.

PARÂMETRO	FORMA COMO AFECTA A VELOCIDADE DA SATINAGEM		
RAZÃO ENTRE SODA CÁUSTICA E ALUMÍNIO	Se aumentar, aumenta a velocidade da Satinagem; logo quanto maior o teor em soda cáustica e menor o teor em alumínio maior a velocidade da Satinagem		
	Contudo este valor não deve exceder 0,78, porque a temperatura poderá aumentar em demasia, conduzindo a um acabamento mais grosseiro e áspero		
TEMPERATURA	Por cada 10°C de aumento de temperatura, quase duplica a velocidade da Satinagem		
ТЕМРО	Quanto maior o tempo de reacção, mais grosseiro e áspero o material irá ficar		



# **N**EUTRALIZAÇÃO

Esta é a etapa imediatamente antes da Anodização, constituída por uma solução fraca (~6%) de Ácido Sulfúrico, e apresenta 2 funções distintas:

Efectuar um branqueamento do material, o qual após a Satinagem, se encontra coberto por uma fina camada superficial de partículas inter-metálicas, conferindo-lhe um aspecto de fuligem cinzenta. Essa camada será tão maior quanto menos puro for o alumínio

Neutralizar o material proveniente de uma fase alcalina, antes de entrar na fase ácida do processo, de forma a não contaminar os banhos de anodização

TINA	8
VOLUME DA TINA	11250L (7,5 x 2,0 x 0,75)
PRODUTOS USADOS	Ácido Sulfúrico
	GARDACID B 4472 (CHEMETALL)
CONCENTRAÇÃO	Ácido Sulfúrico: 55 a 65g/L
TEMPERATURA	Ambiente
TEMPO DE IMERSÃO	3 a 10min
CARACTERÍSTICAS	pH Muito Ácido (1 – 2)
	Banho s/ aquecimento
	Agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina
Controlo	Diário de Concentração de Ácido
REJEIÇÃO DO BANHO	Parcial Anual



# ANODIZAÇÃO

Após a superfície do alumínio estar devidamente limpa e consoante o acabamento solicitado, passa à etapa de Anodização.

A Anodização é um processo electrolítico desenvolvido com um electrólito constituído por uma solução de ácido sulfúrico a 20%. O material encontra-se electricamente ligado como ânodo, sendo que os cátodos são barras de alumínio que se encontram fixas na tina de anodização.

Nestas condições, ao passar corrente eléctrica, ocorre uma reacção exotérmica (libertação de calor) com consequente formação de óxido de alumínio (alumina), que origina uma camada de estrutura porosa e dieléctrica, cuja espessura vai aumentando com o tempo.

Ambos os banhos de Anodização possuem as seguintes características:

TINA	9 & 10	
VOLUME DA TINA	15000 L(7,5x2,0x1,0)	
PRODUTO USADO	Ácido Sulfúrico	
CONCENTRAÇÃO	Ácido Sulfúrico livre: 140 a 150g/L	
	Ácido Sulfúrico total: 180 a 200g/L	
	Alumínio: 9,5 a 10,5g/L	
TEMPERATURA	17 a 21°C	
DENSIDADE DE CORRENTE	1,2 a 1,6Amp/dm ²	
VOLTAGEM	17 a 20V	
TEMPO DE IMERSÃO	Depende da espessura de camada (micragem) pretendida	
	• $t = e / (0,3 \times dc)$	
	(t = tempo, min; e = espessura, $\mu$ m; dc = densidade de corrente, Amp/dm ² )	
CARACTERÍSTICAS	Tina com cátodos laterais, ligados através de barramentos rectificadores com capacidade para 9000Amp	
	Banho com arrefecimento por intermédio de recirculação do electrólito através de permutador de calor onde circula água a 7°C, arrefecida por intermédio de <i>chiller</i>	
	Banho com agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina	
CONTROLO	Diário de Ácido Sulfúrico e Alumínio	
REJEIÇÃO DO BANHO	Parcial se Alumínio> 11g/L	



Os parâmetros que mais influenciam a etapa de Anodização encontram-se descritos na tabela seguinte.

PARÂMETRO	FORMA COMO INFLUENCIA A FORMAÇÃO DE CAMADA ANÓDICA
DENSIDADE DE CORRENTE	Se for muito baixa, é necessário mais tempo de anodização, aumentando o ataque por parte do electrólito na camada anódica, produzindo uma camada anódica de pouca qualidade
	Se for muito elevada, aumenta a possibilidade de aquecimentos locais na superfície do alumínio, dando origem a uma camada anódica de aspecto áspero, queimado, e de pouca resistência e dureza
VOLTAGEM	Quanto menor for, menor o tamanho dos poros criados na camada anódica, que serão em maior número
	Se for maior, obtém-se menos poros, mas maiores – não aconselhável no caso de coloração, sob pena de o estanho depositado nos poros não ficar retido nos mesmos por estes serem muito largos
CONCENTRAÇÃO DO ELECTRÓLITO	Quanto maior for, maior a condutividade do electrólito, o que diminui o consumo de energia, mas por outro lado ao ultrapassar o valor máximo, provoca a dissolução da camada anódica, devendo manter-se dentro dos limites especificados
CONCENTRAÇÃO DE ALUMÍNIO	Se for muito baixa, o banho não irá funcionar muito bem, porque o equilíbrio não foi atingido
	Se for muito elevada, diminui a condutividade do electrólito e a sua capacidade de formar uma boa camada anódica, sendo necessário recorrer a voltagens mais elevadas para obter o mesmo resultado; pode também dar uma coloração acinzentada ao alumínio
	Por este motivo, e uma vez que existe sempre alguma dissolução de alumínio no banho, é necessário renovar os banhos anódicos com alguma frequência de modo a ter uma concentração de alumínio o mais constante possível, dentro dos limites especificados
<b>A</b> GITAÇÃO	É importante ter uma boa agitação no banho de anodização de forma a prevenir aquecimentos localizados, a manter uma temperatura constante e homogénea
	Contudo, em excesso, a agitação irá provocar que o material se solte da suspensão, diminuindo os pontos de contacto entre o material e a barra anódica por onde passa a corrente eléctrica
TEMPERATURA	Quanto maior for a temperatura, menos qualidade e resistência terá a camada anódica assim formada, nomeadamente:
	<ul> <li>Diminui a espessura da camada anódica</li> </ul>
	Dificulta a selagem
	Pode originar a formação de uma camada pulverulenta  Dificulto a uniformização dos cores.
	Dificulta a uniformização das cores  Com temperaturas menores, obtém se filmes apódicos de major dureza.
	Com temperaturas menores, obtém-se filmes anódicos de maior dureza e resistência, mas será necessária uma maior voltagem para produzir a mesma densidade de corrente



# COLORAÇÃO ELECTROLÍTICA

O alumínio após ter sido anodizado pode ou não ser colorido.

Há diversos tipos de coloração: por adsorção, por interferência, multicoloração, ou electrolítica – usada na Vale de Mafra.

A coloração electrolítica envolve a deposição de partículas metálicas nos poros da camada anódica, através da passagem de corrente eléctrica alternada através da solução electrolítica que contem um sal metálico, nomeadamente Sulfato de Estanho.

A profundidade da cor depende da quantidade de pigmentação depositada, a qual por sua vez depende da concentração do banho e do tempo de imersão.

Devem ser usados agentes estabilizantes de forma a prevenir a oxidação do estanho, e o banho deve ser filtrado de modo a minimizar a deposição de impurezas nos poros; por outro lado, não se deve usar agitação neste banho para minimizar a oxidação do estanho.

TINA	13			
VOLUME DA TINA	18000L (7,5 x 2,0 x 1,2)			
PRODUTOS USADOS	Ácido Sı	ulfúrico	_	
	GARDO	COLOUR 7724	(CHEMETALL)	
	GARDO	COLOUR 7700	(CHEMETALL)	
CONCENTRAÇÃO	Ácido Sı	ulfúrico: 18 a 23g	ı/L	
	Estanho	: 8,8 a 9,3g/L		
TEMPERATURA	Ambient	e		
TEMPO DE IMERSÃO	Depende da cor pretendida:			
	COR DESCRIÇÃO TEMPO (SEG)			
	1	Inox	25	
	2	Bronze	270 a 290	
	3	Castanho	460 a 480	
	4	Preto	840 a 870	
CARACTERÍSTICAS	pH Muite	o Ácido (1 – 2)		
	Banho s	/ aquecimento		
	Com recirculação por intermédio de uma bomba com filtro			
CONTROLO	Diário de Estanho e Semanal de Ácido Sulfúrico			
REJEIÇÃO DO BANHO	Quando começa a ficar com muita lama em suspensão, decanta-se o banho e rejeitam-se as lamas			



### SELAGEM A FRIO

A última etapa do processo consiste na selagem dos poros formados durante a anodização, operação esta que vai conferir ao material a sua resistência física e química.

Existem dois tipos distintos de selagem dos poros: a quente (hidratação) ou a frio (impregnação), sendo esta última a usada na empresa Vale de Mafra.

A Selagem a Frio permite selar os poros do material em condições energéticas bastante mais favoráveis, visto usar temperaturas na ordem de 25 a 30°C, ao passo que a Selagem a Quente ocorre acima de 96°C. A Selagem a Frio também é conhecida por Impregnação, visto que o método que usa é encher, ou impregnar os poros com sais de Níquel, ou Fluoretos; ao passo que a Selagem a Quente, ou Hidratação, hidrata o poro até este formar uma espécie de gel (bohemite) que ao solidificar sela o poro.

O tempo de imersão é também mais favorável no caso da Selagem a Frio, visto ser inferior, em cerca de 1/3 ao aplicado na Selagem a Quente. Contudo e visando melhorar as propriedades do alumínio selado a frio, é aconselhável uma ligeira imersão em água desmineralizada quente, a cerca de 60°C, durante um tempo idêntico ao que permaneceu na etapa de Selagem a Frio (processo com água mineralizada enconta-se desactivado). Procede-se com água da rede pública.

As directivas Qualanod indicam que a Perda de Massa na Selagem seja inferior a 30mg/ dm² e o teste da gota não deve dar resultado igual ou superior a 2.

TINA	17	
VOLUME DA TINA	18000L (7,5x2,0x1,2)	
PRODUTO USADO	Níquel – GARDO SEAL 1942 E (CHEMETALL)	
	Fluoreto – GARDO BOND ADDITIVE H 7529 AG (CHEMETALL)	
CONCENTRAÇÃO	Níquel: 1,4 a 1,6g/L	
	Fluoreto: 200 a 300ppm	
TEMPERATURA	25 a 30°C	
TEMPO DE IMERSÃO	Depende da espessura de camada:	
	t (min) = 0,8 a 1,2 x e( $\mu$ m), em termos médios o valor da espessura é igual ao valor do tempo de imersão	
CARACTERÍSTICAS	pH: 5,5 a 6,5	
	Banho c/ aquecimento através de queimador, situado no fundo da tina; tem circuito de arrefecimento com água a circular por uma serpentina lateral	
	Com agitação promovida, por ar comprimido que circula numa tubagem perfurada situada no fundo da tina	
CONTROLO	Diário de Níquel e Fluoreto	
	De pH e Temperatura, 2 vezes por turno	

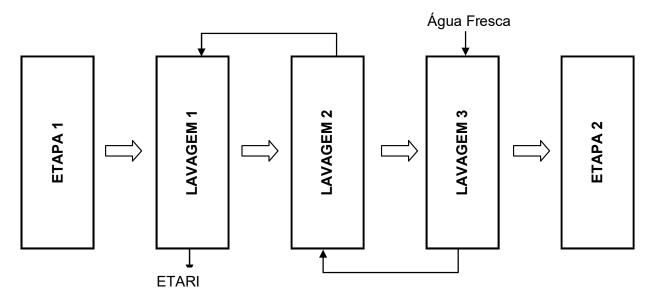


REJEIÇÃO DO BANHO

Quando a selagem não está em condições, ou a Perda de Massa excede 30mg/ dm², apesar de todas as outras condições estarem OK



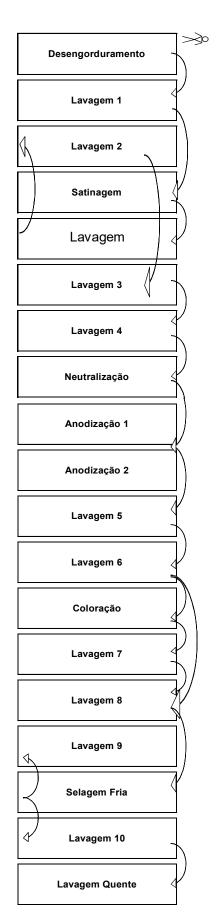
### **LAVAGENS DO PROCESSO**


As lavagens são passos intermédios entre cada etapa do processo anteriormente descrita. Permitem minimizar contaminações para as etapas seguintes com produtos provenientes de etapas anteriores, ao mesmo tempo que limpam o material.

LAVAGEM	1	2	3	4
TINA	2	3	6	7
VOLUME DA TINA		112	250L	
PRODUTO USADO		Água ir	ndustrial	
TEMPERATURA		Amb	piente	
TEMPO DE IMERSÃO		Insta	antes	
CARACTERÍSTICAS	pH Ácido (2 – 3) Banho s/	pH Muito Alcalino (12 – 14)	pH Alcalino (10 – 12)	pH Pouco Alcalino (8 – 10)
	aquecimento	Banho s/ aquecimento	Banho s/ aquecimento	Banho s/ aquecimento
REJEIÇÃO DO BANHO	2 em 2 meses	3 vezes/ mês	3 vezes/ mês	Mensal
LAVAGEM	5	6	7	8
TINA	11	12	14	15
VOLUME DA TINA	11250L			
PRODUTO USADO		Água ir	ndustrial	
TEMPERATURA	Ambiente			
TEMPO DE IMERSÃO	Instantes			
CARACTERÍSTICAS	pH Ácido (2 – 3) Banho s/	pH Muito Alcalino (12 – 14)	pH Alcalino (10 – 12)	pH Pouco Alcalino (8 – 10)
	aquecimento	Banho s/ aquecimento	Banho s/ aquecimento	Banho s/ aquecimento
REJEIÇÃO DO BANHO	Mensal	3 vezes/ mês	3 vezes/ mês	Mensal

LAVAGEM	9	10	Quente
TINA	16	18	19
VOLUME DA TINA	11	18000L	
PRODUTO USADO	Água industrial		
TEMPERATURA	Am	60°C	
TEMPO DE IMERSÃO	Instantes		
CARACTERÍSTICAS	pH Ácido (2 – 3) Banho s/ aquecimento	pH Muito Alcalino (12 – 14) Banho s/	pH Alcalino (10 – 12) Banho s/
		aquecimento	aquecimento
REJEIÇÃO DO BANHO	Mensal	3 vezes/ mês	3 vezes/ mês




Devem tanto quanto possível ser feitas em cascata de forma a diminuir consumos de água, e a manter as lavagens mais limpas, e desta forma mais eficientes. Deste modo ter-se-á a lavagem mais limpa a receber água fresca, e a sair para outra lavagem anterior (menos limpa) e assim consecutivamente, de acordo com esquema abaixo indicado.



Note-se que para aumentar ainda mais a eficiência das lavagens, a última lavagem de um processo deve ter duas rampas com bicos aspersores que recebem água limpa, para lavarem o material à medida que este vai saindo da tina.

# **ESQUEMA DA LINHA**

As setas representam o fluxo de material através das várias etapas.



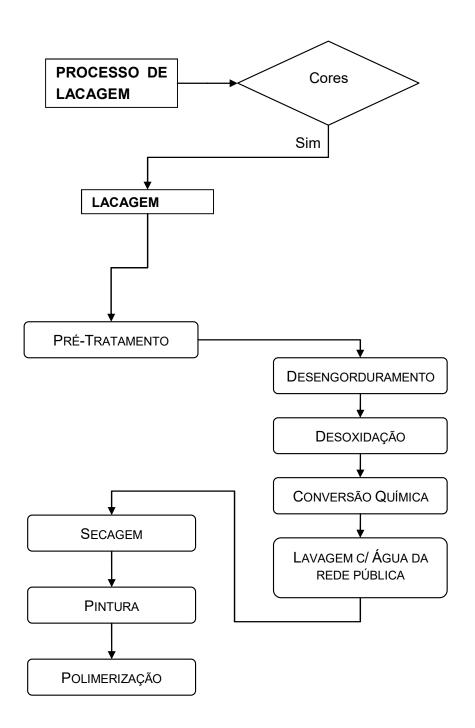


# PROCESSO DE LACAGEM

Define-se por processo de Lacagem aquele que usa tinta em pó para cobrir o alumínio que foi pré-tratado por forma a preparar a sua superfície para que a aderência do pó seja optimizada.

Tal como o processo de Anodização, também o processo de Lacagem almeja proporcionar ao alumínio assim tratado uma superfície decorativa, repelente à sujidade e resistente à corrosão. Contudo, ao passo que no processo de Anodização a protecção inerente envolve a alteração superficial do alumínio, na Lacagem a protecção resulta da adição de outro material que se deposita sobre o alumínio.

É um processo relativamente recente, tendo surgido nos anos 70, que consiste na aplicação de tinta em pó numa superfície de alumínio que foi pré-tratada por forma a receber melhor o pó. Permite a níveis estéticos uma maior variedade quer de cores, quer em termos de texturas e brilhos, permitindo mesmo imitar outras superfícies como madeira, ou mármore.


As tintas em pó usadas no tratamento são do tipo termo-endurecível, baseadas em resinas de poliéster, ou epoxi, ou epoxipoliester.

Essa aplicação, que pode ser efectuada de 2 maneiras, tem por norma natureza electrostática, em que o pó carregado negativamente vai aderir ao alumínio, com carga positiva.

Para o processo de lacagem ser bem sucedido, o alumínio deve ter a superfície bem preparada para a adesão do pó. Isso é conseguido através de um pré-tratamento, que pode ou não usar crómio por forma a efectuar a conversão química da superfície do alumínio, tornando-a mais apta a receber a camada de pó.



# **FLUXOGRAMA DO PROCESSO**





# **ETAPAS DO PROCESSO**

### **PRÉ-TRATAMENTO**

De notar que após cada etapa do processo de pré-tratamento existem 2 lavagens, de forma a minimizar contaminações entre os banhos.

# Desengorduramento

Tal como no processo de Anodização, a etapa de Desengorduramento pretende remover óleos, gorduras e outras substâncias que podem contaminar a superfície do alumínio.

LACAGEM	
TINA	1
VOLUME DA TINA	12000L (7,5 x 1,6 x 1,0)
PRODUTO USADO	GARDOCLEAN T 5320 (CHEMETALL)
CONCENTRAÇÃO	Montagem a 40g/L; Alcalinidade Total: 26 a 27 pontos
	pH Muito Alcalino (12 – 14)
TEMPERATURA	40 a 60°C
TEMPO DE IMERSÃO	9 a 11min (consoante o tipo e sujidade do material)
CARACTERÍSTICAS	Banho c/ aquecimento através de serpentina, situada de lado no tanque, onde circula água quente;
	Com agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina
CONTROLO	2x/ semana da Alcalinidade Total
REJEIÇÃO DO BANHO	Se criar lama, decanta-se o banho



# Desoxidação

Remove a camada natural de óxido que o alumínio possui na sua superfície, ao mesmo tempo que retira ainda outros óxidos e insolúveis que possam existir, de modo a obter uma superfície posta a nú e homogénea. Por outro lado, neutraliza ainda o alumínio antes da etapa de Conversão Química – que, por norma, é ácida.

As directivas Qualicoat exigem nesta etapa uma perda de massa mínima de 1,0g/m², de modo a garantir que a superfície esteja pronta para a etapa seguinte de Conversão Química.

LACAGEM				
TINA	4			
VOLUME DA TINA	9000L (7,5 x 1,6 x 0,75)			
PRODUTO USADO	GARDACID P 4392 ES			
	(CHEMETALL)			
CONCENTRAÇÃO	Montagem a 12g/L; Acidez Livre: 9 a 11 pontos			
TEMPERATURA	15 a 20°C			
TEMPO DE IMERSÃO	9 a 11min (consoante o tipo e sujidade do material)			
CARACTERÍSTICAS	pH Muito Ácido (1 – 2)			
	Banho c/ aquecimento através de 4 resistências eléctricas;			
	Com agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina			
CONTROLO	2x/ semana da Acidez Livre			
	2x/ semana da Perda de Massa			
	1x/ mês do Alumínio Dissolvido (<10 g/ L)			
REJEIÇÃO DO BANHO	Se criar lama, ou se o alumínio dissolvido estiver acima de 10g/ L, decanta-se o banho			



### Conversão Química

A Conversão Química consiste no tratamento do alumínio de modo a aumentar a adesão entre a sua superfície e o pó na etapa de pintura, ao mesmo tempo que confere uma maior resistência à corrosão.

É normalmente efectuada com Crómio, (crómio (III) – verde; crómio (VI) – amarela) mas tendo em conta que este metal apresenta propriedades que o tornam perigoso, nos últimos anos têm sido desenvolvidas algumas alternativas sem crómio, que recorrem a outros metais, como o Titânio, ou o Zircónio, entre outros, para efectuar a conversão química.

A conversão química usada na empresa Vale de Mafra é com crómio (VI) – amarela.

As directivas Qualicoat exigem um Peso de Camada entre 0,6 e 1,2g/m², de modo a garantir que a camada de crómio depositada à superfície do alumínio é a adequada para na etapa de pintura a aderência ser óptima, e a resistência à corrosão ser maximizada.

LACAGEM					
TINA	7				
VOLUME DA TINA	9000L (7,5 x 1,6 x 0,75)				
PRODUTO USADO	GARDOBOND ADDITIVE 7008 ACELERADOR				
	GARDOBOND C723 C CRÓMIO				
	(CHEMETALL)				
CONCENTRAÇÃO	Montagem: GARDOBOND C723 A a 9,0g/L;				
	GARDOBOND ADDITIVE 7008 a 1,4g/L;				
	Acidez Livre: 2,5 a 3,5 pontos				
	Crómio: 4,5 a 5,5 pontos				
TEMPERATURA	Ambiente				
TEMPO DE IMERSÃO	2 a 4min (consoante o valor de Peso de Camada)				
CARACTERÍSTICAS	pH Muito Ácido (1 – 2)				
	Banho c/ aquecimento através de 4 resistências eléctricas;				
	Com agitação promovida por ar comprimido que circula numa tubagem perfurada situada no fundo da tina				
CONTROLO	2x/ semana da Acidez Livre e do Crómio				
	2x/ semana do Peso de Camada				
REJEIÇÃO DO BANHO	Se o valor de Peso de Camada for inferior ao pretendido, e já se tiver aumentado a concentração do banho, é sinal que o banho está pouco reactivo e necessita de ser renovado				



# Lavagens

Entre cada etapa são efectuadas duas lavagens com água industrial, à temperatura ambiente, de modo a minimizar contaminações entre as várias etapas do processo. Contudo, a última etapa do pré-tratamento é a Lavagem com Água da rede pública (Água Desmineralizada está desactivada).

### **LACAGEM**

LAVAGEM	1	2	3	4	5	ÁGUA				
TINA	2	3	5	6	8	9				
VOLUME DA TINA	7000L									
PRODUTO USADO	Água industrial									
TEMPERATURA	Ambiente									
TEMPO DE IMERSÃO	Instantes									
CARACTERÍSTICAS	pH Ácido (2 – 4)									
	Banho s/ aquecimento									
REJEIÇÃO DO BANHO	Mensal									



### **SECAGEM**

A etapa de secagem é efectuada numa estufa, onde o material é colocado logo após a última etapa do Pré-Tratamento. A temperatura do material na estufa não deve exceder 65°C, sob pena de a camada de conversão ficar danificada e a resistência à corrosão diminuir.

Esta etapa precede a pintura, em que o material deve entrar completamente isento de humidade de modo a optimizar a aderência do pó à superfície do alumínio e a que não ocorram problemas de pintura.

As peças pré-tratadas e secas vão ser retiradas dos cestos e colocadas em suspensões para irem a lacar à cabina de pintura.

### **PINTURA**

A etapa de pintura é conduzida em cabinas próprias para o efeito, em que o material se encontra suspenso num transportador que circula a uma dada velocidade ao longo da cabina de pintura.

À medida que o material vai passando pela cabina de pintura, vai sendo pulverizado com pó carregado electrostaticamente com carga negativa que vai aderir ao material que, ligado à terra através do transportador, tem carga positiva.

Uma cabina de pintura é composta de:

- DEPÓSITO DE PÓ o pó aqui colocado é fluidificado, através de uma membrana porosa no fundo do depósito por onde circula ar a uma determinada pressão. O pó assim fluidificado vai ser transportado por um sistema de injectores (tipo Venturi) e mangueiras até às pistolas.
- PISTOLAS quando chega às pistolas o pó é carregado electrostaticamente através de um eléctrodo situado na ponta da pistola por onde o pó sai, depositando-se no material.
- ROBÔ onde as pistolas se encontram montadas; normalmente existem 2 robôs, um em frente ao outro, que realizam movimentos de sobe e desce, com uma determinada amplitude e velocidade e se encontram a uma distância calculada do material, de modo a que o pó depositado no material seja o adequado
- SISTEMA DE RECUPERAÇÃO DE PÓ constituído por um sistema de aspiração que suga o pó que não é depositado no material; este pó é então direccionado para um ciclone, de alta eficiência, que recupera cerca de 98% do pó sugado e envia para o depósito de pó, após ter passado por um sistema de peneiros para reter partículas estranhas; os restantes 2% correspondem a partículas de granulometria muito baixa (5 a 10µm) que são enviados para um filtro de mangas, em que o ar é filtrado e o pó fica retido sendo posteriormente recolhido constituindo assim um resíduo do processo.



### **POLIMERIZAÇÃO**

A etapa de polimerização, ou cura, é a última do processo. Aqui, através de calor, o pó vai ser polimerizado e transformar-se numa capa protectora do alumínio, resistente às intempéries.

Esta etapa é conduzida num forno de cura, normalmente de convecção, por onde o material vai passando, através do transportador. A temperatura dos perfis vai subindo gradualmente até se atingir a temperatura de cura, que é normalmente 180 a 200°C, dependendo do tipo de pó usado, mantém-se neste patamar durante alguns minutos – 10 a 20, dependendo das instruções do fabricante de pós, e posteriormente irá diminuir até à saída do forno.

Um bom forno de polimerização deve:

- Ser energeticamente eficiente
- Aumentar rápida e homogeneamente a temperatura das peças
- Manter a mesma temperatura ao longo do comprimento e da altura da carga de perfis
- Não apresentar muita turbulência de modo a não soprar o pó da superfície do material antes que este gelifique e a não levantar poeiras que se podem depositar no material