

Rockbuilding Solid Project Management

ESTUDO GEOLÓGICO E GEOTÉCNICO:

HOTEL PRAIA GRANDE

PÊRA, SILVES

16 DE DEZEMBRO DE 2021

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

Conteúdo

1	Intro	odução	4
2	Enq	uadramento Geológico	5
	2.1	Litoestratigrafia	5
	2.1.	1 Geologia local	6
	2.2	Tectónica	7
	2.3	Geomorfologia e Hidrogeologia	8
	2.4	Sismicidade	10
3	Trak	palhos Realizados	13
	3.1	Sondagens Mecânicas	13
	3.2	Ensaios Laboratoriais	17
	3.3	Instalação de Piezómetros	18
	3.4	Ensaios de Permeabilidade	19
4	Con	dições Geológicas e Geotécnicas	21
	4.1	Modelo Geotécnico	21
	4.2	Análise Estatística	26
	4.3	Condições de fundação	26
	4.4	Escavabilidade e Contenção	29
R	eferênc	ias Bibliográficas	30
Α	nexos		31
	ANEXO	I – Boletins de Sondagens	32
	ANEXO	II – Perfis Interpretativos e Planta de Localização dos Trabalhos	33
	ANEXO) III – Boletins de Ensaios Laboratoriais	34

HOTEL PRAIA GRANDE

Rockbuilding

Solid Project Management

064.21.PRJ PÊRA, SILVES

1 Introdução

O presente estudo foi realizado por solicitação da Rockbuilding, e visa a avaliação das características geológicas e geotécnicas de um terreno localizado na Unidade de Execução 1 (UE1) no qual se prevê a construção do Hotel Praia Grande, em Pêra, Silves. A localização do referido terreno encontra-se aproximadamente assinalado pelo polígono vermelho na Figura I.

Figura I – Localização da área em estudo em imagem aérea (Google Earth ™).

Neste documento apresentam-se e interpretam-se os resultados dos trabalhos de prospecção e investigação efectuados, bem como a informação obtida da consulta de elementos bibliográficos da especialidade existentes sobre o local. Descrevem-se os dados geológicos e geotécnicos relevantes, definem-se as zonas geotécnicas e tecem-se considerações acerca das condições de fundação, contenção e escavabilidade das formações ocorrentes.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

2 Enquadramento Geológico

2.1 Litoestratigrafia

De acordo com a Folha 52-B (Albufeira) da Carta Geológica de Portugal à escala 1:50 000, na área em estudo ocorre a unidade designada por "Calcarenitos e siltitos da Praia Grande — M¹" datada do Miocénico inferior (e médio?) e também a unidade designada por "Aluviões — a" de idade Moderna.

Segundo a notícia explicativa da referida folha as manchas de M¹ correspondem a várias unidades litostratigráficas no qual se enquadra i) Siltes glauconíticos da Campina de Faro; ii) Arenitos calcários e calcários com seixos; iii) Formação carbonatada de Lagos-Portimão. Na presente carta afloram os pontos ii) e iii). Estas duas unidades são de difícil separação por serem ambas constituídas por rochas carbonatadas. Nas arribas litorais é possível distinguir dois conjuntos; um inferior, mais espesso, encimado por uma superfície de descontinuidade que o separa dos Arenitos calcários e Calcários com seixos.

De um modo geral a costa do Barlavento é dominada pela presença de arribas verticais, com alturas entre 2 e 40 m, talhadas em rochas carbonatadas, com alternâncias de camadas subhorizontais decimétricas de calcarenitos finos e calcarenitos bioclásticos. Segundo Marques (1997), os teores de carbonatos oscilam entre 60-75% nos calcarenitos finos, atingindo valores superiores a 80% nos calcarenitos fossilíferos.

Associadas à presença de linhas de água, na zona de estudo a unidade "Aluviões – a" está associada à Ribeira de Alcantarilha.

A Figura II mostra a localização aproximada da área em estudo assinalada por uma circunferência vermelha, em extracto da Folha 52-B (Albufeira) da Carta Geológica de Portugal à escala 1:50 000 e extracto da respectiva legenda.

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

Figura II – Localização aproximada da área em estudo assinalada por uma circunferência vermelha, em extracto da Carta Geológica de Portugal, Folha 52-B (Albufeira), à escala 1:50 000 e extracto da respectiva legenda (sem escala).

2.1.1 Geologia local

De acordo com os trabalhos de prospecção efectuados na área em estudo ocorre a seguinte sequência litoestratigráfica do topo para a base:

- Argila arenosa de cor castanha escura;
- Sequência de siltes, areias finas/médias, areias finas siltosas e silte argilosos de tonalidades amareladas por vezes com fragmentos calcareniticos consolidados com granulometrias a variar entre a areia e o calhau;
- Intercalando os anteriores ou na sua base ocorre por vezes calcarenitos, decompostos, de tonalidades amareladas ou, medianamente alterados a muito alterados.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

Realça-se ainda a presença de uma zona de incidência de carsificação, nomeadamente nas proximidades da sondagem S10.

2.2 Tectónica

Do ponto de vista da estrutura geológica, a Folha 52-B (Albufeira) é dominada pela estrutura diapírica de Albufeira e pela bacia de afundimento da Guia.

A primeira corresponde a um anticlinal falhado, com dois compartimentos distintos, separados por sistema de desligamento direitos NNW-SSE.

O compartimento ocidental é essencialmente formado por série do Kimeridgiano-Portlandiano, dobrado em anticlinal cujo eixo passa pela Praia da Baleeira, com orientação ENE-WSW.

O flanco norte é cortado por diversas falhas inversas de orientação ENE-WSW, cujo pendor vai diminuindo à medida que se afastam do eixo da estrutura.

O flanco sul é formado por calcários com nódulos de sílex do Bajociano (?) e por calcários dolomíticos do KImeridgiano-Portlandiano (?), a que se sucede série margo-calcária berriasiana. Espessa série terciária assenta em discordância angular sobre as formações mesozoicas; esta série inicia-se por formação essencialmente carbonatada do Miocénico inferior, fortemente carsificada no topo e com enchimento de margas. Variações bruscas e importantes na inclinação da série terciária, acima da formação carbonatada, foram interpretadas como simples escorregamentos na plataforma estrutural de sedimentação (slumpling), que corresponderia a paleorrelevo mesozoico fortemente carsificado.

O compartimento oriental mostra o flanco setentrional de estrutura anticlinal menos evidente que a do compartimento ocidental; esta estrutura corresponde à ejecção das Margas e calcários arenosos de Albufeira, que se situam abaixo dos calcários dolomíticos kimmeridgianos.

A pequena bacia de afundimento cretácica da Guia, com orientação W-E, deve ter sido induzida pela migração lateral dos evaporitos hetangianos para o núcleo do diápiro de Albufeira.

HOTEL PRAIA GRANDE

064.21.PRJ PÊRA, SILVES

2.3 Geomorfologia e Hidrogeologia

Com base na cartografia topográfica disponível, o local onde se insere a área em estudo encontrase numa relativamente plana, com cotas na carta topográfica que deverão estar em torno de 8 – 10 m. Tal informação é corroborada pelo levantamento topográfico fornecido pelo cliente onde as cotas variam aproximadamente entre os mesmos valores.

A localização da área em estudo encontra-se representada na Figura III sob a forma de uma circunferência vermelha inserida num excerto da carta topográfica nº 604, Lagoa, à escala 1:25 000 do IGeoE.

Figura III – Localização aproximada da área de estudo em extracto da carta topográfica nº 604, Lagoa, à escala 1:25 000, do IGeoE (sem escala)

As condições hidrogeológicas de uma dada região resultam de uma complexa interacção entre a litologia, estrutura geológica e tectónica, que permite ou impede a circulação de água. Contudo este equilíbrio sensível do meio hidrogeológico poderá ser afectado por intervenções antrópicas que levem a uma modificação das características hidrogeológicas e estruturais dos meios envolventes.

Na área em estudo ocorrem horizontes distintos, o mais superficial é composto essencialmente solos de granulometria mais ou menos arenosa e siltosa. Assim sendo, é possível que existam níveis de água nas formações de carácter mais arenoso. Estes níveis podem ocorrer sobre a forma

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

de níveis suspensos, caso se verifique a presença de lentículas arenosas entre camadas de granulometrias mais finas (siltes e/ou argilas), ou aquíferos livres se as formações arenosas ocorrerem à superfície.

Subjacente àqueles foi identificado na sondagem S6 um horizonte de natureza rochosa; a gama de permeabilidades nestes materiais poderá ser bastante ampla. A circulação de água deverá ocorrer principalmente de duas formas:

- Através da porosidade intrínseca;
- Através de cavidades, fracturas, descontinuidades e permeabilidade intrínseca das formações;

Assim, quando o maciço que encontrar pouco fracturado, é expectável uma permeabilidade baixa ou nula, em situações de fracturas abertas é expectável permeabilidades altas. Por outro lado, se as fracturas se apresentarem preenchidas por material arenoso ou por material argiloso, será expectável permeabilidades médias a altas para o primeiro caso e, baixas a nulas para o segundo.

Esta condições favorecem a ocorrência de aquíferos confinados ou semi-confinados, em que a circulação de água será efectuada pelas redes de fracturação do maciço.

Durante os trabalhos de campo foram instalados 2 piezómetros e executados 2 ensaios de permeabilidade conforme se verá adiante no ponto 3.3 e 3.4, respectivamente.

A Figura IV mostra uma tabela de valores típicos de permeabilidade para diferentes tipos de materiais.

HOTEL PRAIA GRANDE

064.21.PRJ PÊRA, SILVES

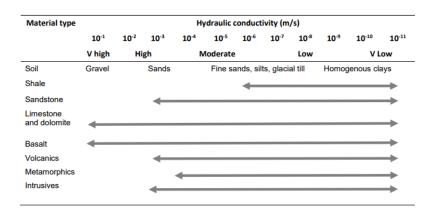


Figura IV - Valores típicos de permeabilidade para diferentes tipos de materiais. Isherwood, (1979) in Price, (2016)

2.4 Sismicidade

No anexo nacional da NP EN 1998-1_2010 – "Eurocódigo 8 – Projeto de estruturas para resistência aos sismos – Parte 1: Regras gerais, acções sísmicas e regras para edifícios" são definidas dois tipos de acções sísmicas, designadamente Acção sísmica do Tipo 1 (sismicidade afastada) e Acção sísmica do Tipo 2 (sismicidade próxima). De acordo com estes dois tipos de acções sísmicas e os valores de aceleração máxima de referência calculadas foi efectuado o zonamento sísmico de Portugal continental.

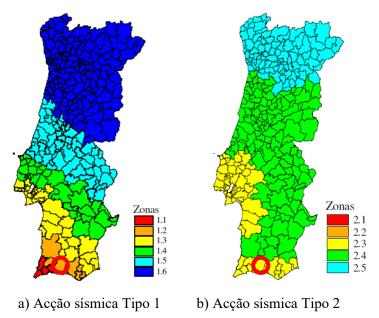


Figura V – Zonamento sísmico em Portugal continental (sismo afastado (a) e sismo próximo (b))

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

Os valores da aceleração máxima de referência para cada uma das zonas sísmicas em função dos dois tipos de actividade sísmica a considerar são os apresentados no Quadro I.

Quadro I - Aceleração máxima de referência - agR, nas várias regiões sísmicas

Ação sísm	ica Tipo 1	Ação sísmica Tipo 2			
Zona Sísmica	a _{gR} (m/s²)	Zona Sísmica	a _{gR} (m/s²)		
1.1	2,5	2.1	2,5		
1.2	2,0	2.2	2,0		
1.3	1,5	2.3	1,7		
1.4	1,0	2.4	1,1		
1.5	0,6	2.5	0,8		
1.6	0,35	-	-		

Quadro II – Descrição dos vários tipos de solo de acordo com EC8

			Parâmetros			
Tipo de terreno	Descrição do perfil estratigráfico	vs,30 (m/s)	NSPT (pancadas/30 cm)	Cu (kPa)		
А	Rocha ou outra formação geológica de tipo rochoso, que inclua, no máximo, 5 m de material mais fraco à superfície	>800	-	-		
В	Depósitos de areia muito compacta, de seixo (cascalho) ou de argila muito rija, com uma espessura de, pelo menos, várias dezenas de metros, caracterizados por um aumento gradual das propriedades mecânicas com a profundidade	360 – 800	>50	>250		
С	Depósitos profundos de areia compacta ou medianamente compacta, de seixo (cascalho) ou de argila rija com uma espessura entre várias dezenas e muitas centenas de metros	180 – 360	15 - 50	70 - 250		
D	Depósitos de solos não coesivos de compacidade baixa a média (com ou sem alguns estratos de solos coesivos moles), ou de solos predominantemente coesivos de consistência mole a dura	<180	<15	<70		
E	Perfil de solo com um estrato aluvionar superficial com valores de vs do tipo C ou D e uma espessura entre cerca de 5 m e 20 m, situado sobre um estrato mais rígido com vs > 800 m/s					
S1	Depósitos constituídos ou contendo um estrato com pelo menos $10\ m$ de espessura de argilas ou siltes moles com um elevado índice de plasticidade (IP > 40) e um elevado teor em água	<100 (indicativo)	-	10 - 20		
S2	Depósitos de solos com potencial de liquefacção, de argilas sensíveis ou qualquer outro perfil de terreno não incluído nos tipos A – E ou S1					

A área em estudo localiza-se nas Zonas Sísmicas 1.2 e 2.3 respectivamente para as acções sísmicas do Tipo 1 e Tipo 2.

HOTEL PRAIA GRANDE

064.21.PRJ PÊRA, SILVES

Quanto ao tipo de solo, segundo a classificação do EC8, os terrenos em estudo deverão ser considerados como sendo do tipo B.

HOTEL PRAIA GRANDE

064.21.PRJ PÊRA, SILVES

3 Trabalhos Realizados

3.1 Sondagens Mecânicas

Foram realizadas no local 12 sondagens verticais acompanhadas de ensaios de penetração dinâmica normalizada (SPT - Standard Penetration Test) espaçados de 1,5m. Os procedimentos e metodologias seguiram as recomendações da EN ISO 22476-3 – "Geotechnical investigation and testing – Field testing – Part3: Standard Penetration test" e da norma ASTM D1586 – "Standard Method For Penetration Test and Split Barrel Sampling of Soils".

Na execução das sondagens foi utilizada uma sonda da marca Fraste, modelo multidrill SL, accionada por motor a diesel e com mobilização autónoma sobre chassis de lagartas (Figura VI). A perfuração das sondagens foi efectuada à rotação e rotary recorrendo-se, respectivamente, a uma coroa diamantada/tungsténio acoplada a um amostrador do tipo T2 com 86 mm de diâmetro e a trialeta de 86 mm.

Figura VI - Sonda utilizada (Fraste multidrill SL)

No Quadro III é apresentado um resumo dos principais atributos das sondagens realizadas. A sua localização aproximada em planta é apresentada no Anexo II.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

Quadro III - Resumo das Sondagens

Sondagem	Comprimento (m)	Ensaios SPT	Piezómetro
S1_Pz	9	6	Sim
S2	9	6	•
S3	9	6	-
S4	13,5	9	-
S5	9	6	-
S6	19,5	13	-
S7	9	6	-
S8	10,5	7	-
S9	7,5	5	-
S10	25,5	17	-
S11	9	6	-
S12_Pz	6	4	Sim

Os registos individuais das sondagens, com a descrição visual dos terrenos atravessados, as profundidades atingidas, a simbologia, a estratigrafia e os resultados dos ensaios SPT são apresentados no Anexo I.

As amostras recuperadas foram dispostas por ordem, em caixas devidamente compartimentadas e referenciadas. Todas as informações relevantes estão registadas nos boletins de sondagem incluídos no Anexo I.

No decurso das sondagens, na ocorrência de maciço terroso, foram realizados ensaios SPT de 1,5 m em 1,5 m. Estes ensaios forneceram valores de resistência dos materiais intersectados. O ensaio consiste na cravação de um amostrador normalizado (amostrador de Terzaghi), sob o impacto de um pilão com uma massa de 63,5 kg e uma altura de queda de 76 cm. Os valores de resistência foram obtidos pelo número de pancadas necessárias à cravação do amostrador em 45 cm. Cada ensaio realizou-se em três fases, cada uma delas correspondendo a uma penetração de 15 cm, e

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

registou-se o número de pancadas referentes a cada uma das fases de ensaio. O valor dos primeiros 15 cm é meramente informativo, pois poderá estar alterado pela furação realizada. O número de pancadas (N_{SPT}) dos últimos 30 cm é somado e utilizado como referência da resistência do material. Nos casos em que não ocorreu a cravação total do amostrador de Terzaghi, o ensaio foi dado por terminado ao fim de 60 pancadas, anotando-se o valor da respectiva penetração.

As amostras de solo obtidas através da sondagem foram caracterizadas quanto à sua natureza, textura, cor e consistência/compacidade¹ baseadas nos valores obtidos dos ensaios SPT (Quadro IV e Quadro V).

Quadro IV - Classificação das areias quanto à compacidade de acordo com os resultados obtidos em ensaio SPT

N _{SPT}	Compacidade
<4	Muito solta
4 -10	Solta
10 - 30	Medianamente compacta
30 -50	Compacta
>50	Muito compacta

Quadro V – Classificação das argilas quanto à consistência de acordo com os resultados obtidos em ensaios SPT

N _{SPT}	Consistência
<2	Muito Mole
2 - 4	Mole
4 - 8	Consistência média
8 - 15	Dura
15 - 30	Muito Dura
>30	Rija

A amostragem obtida de um maciço rochoso pelo processo de furação à rotação permite determinar parâmetros de qualidade, como a Percentagem de Recuperação e o índice RQD (*Rock Quality Designation*).

¹ K. Therzaghi & R. Peck (1948)

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE

064.21.PRJ

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

A Percentagem de Recuperação é definida como sendo a relação entre a soma do comprimento de todos os tarolos obtidos numa manobra e o comprimento do trecho furado nessa manobra. O valor de percentagem obtido dá uma ideia do estado de alteração das diferentes litologias.

O índice RQD é uma percentagem de recuperação aplicável a sondagens à rotação e com duplo amostrador de diâmetro maior ou igual a 76 mm (NX) e corresponde à relação entre a soma dos tarolos obtidos com comprimento igual ou superior a 10 cm e o total da furada. Este índice dá indicações no que respeita à qualidade do maciço rochoso. No Quadro VI, apresenta-se a caracterização dos maciços rochosos segundo D. Deere.

A classificação do estado de alteração e do estado de fracturação dos maciços rochosos é efectuada com base nos critérios adoptados pela Sociedade Internacional de Mecânica das Rochas - S.I.M.R., que se apresentam no Quadro VIII e Quadro VIII.

Quadro VI – Descrição da qualidade dos maciços rochosos com base no índice RQD

RQD	Qualidade
RQD > 90%	Excelente qualidade
75% < RQD < 90%	Boa qualidade
50% < RQD < 75%	Qualidade razoável
25% < RQD < 50%	Qualidade fraca
RQD < 25%	Qualidade muito fraca

Quadro VII – Estados de alteração

Símbolos	Designações	Descrição
W ₁	São	Sem quaisquer sinais de alteração
W ₂	Pouco Alterado	Sinais de alteração apenas nas imediações das
		descontinuidades
W_3	Medianamente	Alteração visível em todo o maciço rochoso, mas a
**5	Alterado	rocha não é friável
W4	Muito Alterado	Alteração visível em todo o maciço rochoso e a rocha é
VV 4	Widito Aiterado	parcialmente friável
W ₅	Decomposto	O maciço apresenta-se completamente friável,
VV5	Decomposito	praticamente com comportamento de solo

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

Quadro VIII - Estados de fracturação

Símbolos	Intervalos (cm)	Descrição
F ₁	> 200	Muito afastadas
F ₂	60 a 200	Afastadas
F ₃	20 a 60	Medianamente afastadas
F ₄	6 a 20	Próximas
F ₅	< 6	Muito próximas

Os parâmetros relativos ao maciço rochoso (percentagem de recuperação "REC", RQD, grau de alteração e fracturação do maciço) são também apresentados nos boletins do Anexo I.

No Anexo II podem ser observados os perfil-geológicos-geotécnicos interpretativos realizados com base nos resultados obtidos nas sondagens.

3.2 Ensaios Laboratoriais

Após a classificação visual das amostras colhidas nos furos de sondagem foram seleccionadas quatro amostras consideradas representativas dos terrenos ocorrentes, para se proceder à realização dos seguintes ensaios de laboratório:

- Teor em água (NP84);
- Análise granulométrica por peneiração húmida (LNEC E-239);
- Determinação dos limites de consistência (LL+LP) (NP 143);

De acordo com os resultados obtidos nos ensaios de identificação, os solos foram classificados segundo as classificações Unificada (ASTM) e AASHTO (Classificação para fins rodoviários). No Quadro IX apresenta-se uma síntese dos resultados obtidos, bem como a classificação geotécnica dos solos amostrados. Os boletins individuais dos ensaios figuram no Anexo III.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

Quadro IX – Resumo dos resultados obtidos nos ensaios laboratoriais (Unificada

Sond N.º	Prof. (m)	Ref.ª amostra	W (%)	LL (%)	IP (%)	<# 4 %	<#10 %	<#200 %	Classif. UNIFICADA	Classif. AASHTO
S1_Pz	7,50 – 7,92	SL_116.21	20,8	NR	NP	100,0	98,0	43,2	SM – Areia siltosa	A-4 (2)
S4	9,00 – 9,45	SL_117.21	21,1	NR	NP	100,0	99,9	50,0	SM – Areia siltosa	A-4 (3)
S10	6,00 – 6,45	SL_118.21	22,3	NR	NP	100,0	98,6	40,5	SM – Areia siltosa	A-4 (1)
S10	12,00 – 12,45	SL_119.21	19,3	NR	NP	92,1	80,2	35,4	SM – Areia siltosa	A-2-4 (0)

W – Teor em água; LL - Limite de Liquidez; IP - Índice de Plasticidade; %< #4 - percentagem de solo que passa no peneiro 4; %< #10 - percentagem de solo que passa no peneiro 10; %< #200 - percentagem de solo que passa no peneiro 200;

3.3 Instalação de Piezómetros

Durante a execução dos trabalhos de campo foram executados dois piezómetros, instalados nas sondagens S1_Pz e S12_Pz, até à profundidade final de cada uma. Os piezómetros foram construídos utilizando tubos de PVC devidamente ligados, lisos e crepinados com profundidades de crepinação que se indicam no Quadro X.

As medições de nível de água efectuadas são apresentadas no Quadro XI.

Quadro X – Profundidades de crepinação

Sondagem	Prof. Crepinação [m]		
S1_Pz	3,0 – 8,8		
S12_Pz	1,5 – 5,9		

Quadro XI – Leituras de nível de água

Dia	S1_Pz	S12_Pz
25/Nov/21	-	Seco
02/Dez/21	Seco	Seco

Os valores apresentados estão em metros (m)

Uma vez que os piezómetros se encontravam secos nas datas indicadas, os ensaios de agressividade ao betão em amostras de águas, previstos, não foram realizados.

HOTEL PRAIA GRANDE

Rockbuilding

064.21.PRJ

PÊRA, SILVES

3.4 Ensaios de Permeabilidade

Durante os trabalhos de campo foram executados dois ensaios expeditos de permeabilidade em regime variável. O chamado ensaio Lefranc permite obter dados acerca da permeabilidade de determinado horizonte de solo, designadamente, um coeficiente de permeabilidade. O princípio do ensaio consiste na injecção de água para o interior de um furo de sondagem revestido, apenas existindo contacto com o solo no troço que se pretende ensaiar e, a partir da resposta dada pelo terreno em termos de absorção da água, inferir acerca da sua permeabilidade.

Contudo, a aplicação deste método está sujeita a uma série de erros, nomeadamente, na sua execução prática: a falta de precisão nas medidas dos elementos geométricos, a deformação no terreno devido à furação, etc... No seu tratamento teórico, a incerteza é introduzida pela especificidade das fórmulas deduzidas para o cálculo do coeficiente de permeabilidade, que variam para cada tipo de enquadramento, ponderando sempre uma série de factores como a forma da cavidade (lanterna), a posição do nível freático, o confinamento ou não confinamento do horizonte, etc...

O cálculo do coeficiente de permeabilidade (k), foi assim efectuado considerando-se as duas fórmulas abaixo transcritas, contemplando, no caso da fórmula (1) a situação de abertura de uma lanterna para ensaio abaixo do nível freático, e no caso da fórmula (2) a abertura de uma lanterna para ensaio acima do nível freático:

$$k = \frac{d_0^2}{4 \times h_m \times \left(\frac{2l}{\ln \frac{2R}{d}} + d\right)} \times \frac{\Delta h}{\Delta t} \quad (m/s)$$
(1)

Em que:

k – Coeficiente de permeabilidade (m/s);

d₀ – Diâmetro interno do revestimento do furo (m);

d – Diâmetro de furação/Diâmetro da lanterna (m);

h_m- Comprimento entre o nível freático e o topo do furo com o nível de água actual (m);

l – Comprimento da lanterna (m);

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

PÊRA, SILVES

R – Distância entre o furo e a zona onde o nível freático não foi afectado com o ensaio (m);

Δh – Descida do nível de água entre uma medição e a próxima (m);

Δt – Tempo entre uma medição e a próxima (s);

$$k = \frac{d_0^2}{8 \times h_0 \times \sqrt{dl}} \times \frac{\Delta h}{\Delta t} \quad (m/s)$$
 (2)

Em que:

k - Coeficiente de permeabilidade (m/s);

d₀ – Diâmetro interno do revestimento do furo (m);

d - Diâmetro de furação/Diâmetro da lanterna (m);

h₀ – Comprimento desde o valor da primeira leitura e até meio da lanterna aberta (m);

l – Comprimento da lanterna (m);

Δh – Descida do nível de água entre uma medição e a próxima (m);

Δt – Tempo entre uma medição e a próxima (s);

Os valores de permeabilidade obtidos são expostos no Quadro XII.

Quadro XII – Resumo de ensaios de permeabilidade LeFranc

Sondagem	Profundidade [m]	Litologia	Fórmula utilizada	k [m/s]	
S1_Pz	4,5 – 5,5	Areia fina de cor amarela com fragmentos calcareniticos consolidados da granulometria do seixo miúdo.	(2)		
S8	6,0 – 7,5	Silte de cor amarelada	(2)	9,25 x 10 ⁻⁷	

Assim, os resultados dos ensaios de permeabilidade indicam permeabilidades moderadas a baixas (10⁻⁷). No entanto, conforme mencionado acima, os valores medidos podem apresentar variações espaciais tanto por excesso como por defeito.

HOTEL PRAIA GRANDE

Rockbuilding

Solid Project Management

064.21.PRJ

PÊRA, SILVES

4 Condições Geológicas e Geotécnicas

4.1 Modelo Geotécnico

ZG1A – Miocénico severamente descomprimido: Silte, silte argiloso e argila arenosa.

 $4 \le N_{SPT} \le 7$

φ: 23°; E: 5 MPa; σ_{adm} < 100 kPa

Zona constituída por materiais siltosos e silto-argilosos de idade miocénica, severamente descomprimidos, de tonalidades amareladas por vezes com fragmentos calcareniticos consolidados da granulometria do seixo miúdo ao calhau.

Estão caracterizados por valores de N_{SPT} compreendidos entre 4 e 7 pancadas o que se traduz em fracas características resistentes, apresentando-se como pouco adequados para utilização como terrenos de fundação.

A amostra de solo colhida nesta ZG, com referência SL_118.21 corresponde a solo do tipo SM – Areia siltosa, segundo a classificação Unificada, e A-4 (1), segundo a classificação AASHTO. A percentagem de finos foi de 40,5 % e o teor de água (W) 22,3 %, tendo sido classificada como Não Plástica.

Foram identificados em todas as sondagens executadas, com excepção da sondagem S4. Ocorre desde a superfície com espessuras na ordem dos 1,5 m. Na sondagem S10, volta a ser identificada aos 6 m de profundidade, com uma espessura 4,5 m.

ZG1B – Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.

 $13 \le N_{SPT} \le 26 (40)$

φ: 26°; E: 6 kPa; σ_{adm}: 150 kPa;

Zona constituída por materiais de idade miocénica, severamente descomprimidos, nomeadamente siltes, siltes argilosos, argila arenosa/siltosa e calcarenito decompostos. As tonalidades variam de amarelada/esbranquiçada a castanha clara.

HOTEL PRAIA GRANDE

Rockbuilding

064.21.PRJ

PÊRA, SILVES

Estes materiais estão associados a valores N_{SPT} compreendidos entre 13 e 26 golpes, ocorrendo um valor isolado de 40 golpes que, dado o seu enquadramento e tratamento estatístico foram considerados como integrantes desta ZG. Dado o seu estado descomprimido estes materiais apresentam resistências algo modestas podendo, no entanto, ser solicitados como terreno de fundação através de métodos directos, na forma de sapatas, pegões ou ensoleiramento geral, ou através de métodos indirectos na forma de estacas ou micro-estacas cumprindo, em todo o caso, os valores de tensões indicados.

Realce-se que esta zona foi identificada, no local de influência da sondagem S10, associada a uma zona de incidência de carsificação, pelo que cuidados especiais devem ser tomados aquando da definição dos elementos de fundação nas imediações.

A amostra de solo colhida nesta ZG, com referência SL_119.21 corresponde a solo do tipo SM – Areia siltosa, segundo a classificação Unificada, e A-2-4 (0), segundo a classificação AASHTO. A percentagem de finos foi de 35,4 % e o teor de água (W) 19,3 %, tendo sido classificada como Não Plástica.

Estes materiais foram identificados nas sondagens S4 e S10, ocorrendo desde a superfície até aos 3 m de profundidade. No caso da sondagem S10, volta a ser identificada aos 10,5 m, ocorrendo aí com uma espessura de 12 m, numa zona marcada por forte incidência de carsificação.

ZG2 – Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.

 $26 \le N_{SPT} \le 48$

φ: 28°; E: 30 MPa; σ_{adm}: 500 kPa

Zona constituída por materiais moderadamente descomprimidos, de idade miocénica, tais como areia fina, areia siltosa, silte, e silte argiloso de tonalidades amareladas, por vezes com fragmentos calcareniticos consolidados da granulometria do seixo miúdo.

Os materiais pertencentes a esta ZG são caracterizados por valores N_{SPT} compreendidos entre 26 e 48 pancadas. Dada a profundidade a que ocorre, estes materiais podem ser solicitados como terrenos de fundação tanto através de métodos directos na forma de sapatas ou pegões, como

HOTEL PRAIA GRANDE

Rockbuilding

064.21.PRJ

PÊRA, SILVES

por métodos indirectos na forma de estacas ou micro-estacas no caso de não se prever escavações.

A amostra de solo colhida nesta ZG, com referência SL_117.21 corresponde a solo do tipo SM – Areia siltosa, segundo a classificação Unificada, e A-4 (3), segundo a classificação AASHTO. A percentagem de finos foi de 50,0% e o teor de água (W) 21,1 %, sendo classificada como Não Plástica.

Foi identificada nas sondagens S4, S6, S9 e S12_Pz, ocorrendo a uma profundidade máxima identificável de 16,5 m na zona de influência da sondagem S6 e mínima de 1,5 m na zona de influência da sondagem S9 e S12_Pz. Toma maior expressão na zona de influência da sondagem S4 onde foi identificada entre os 3 m e 10,5 m de profundidade.

ZG3 – Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

 $(49) 51 \le N_{SPT} \le 60$

 ϕ : 33°; E: 40 MPa; σ_{adm} : 650 - 1000 kPa

Zona constituída por materiais de idade miocénica ligeiramente descomprimidos, nomeadamente areias finas, areias siltosas, areias médias, siltes, siltes argilosos e calcarenito. Estes materiais apresentam-se com tonalidades essencialmente amareladas ocorrendo, por vezes com fragmentos calcareníticos incorporados da granulometria do seixo miúdo ao calhau.

Esta ZG é caracterizada por valores de N_{SPT} compreendidos entre 51 e 60 pancadas, ocorrendo dois valores isolados de 49 que, dado o seu enquadramento e tratamento estatísticos se optou por integrar nesta ZG. Esta zona pode ser utilizada tanto por métodos directos na forma de sapatas ou pegões, como por métodos indirectos na forma de estacas ou micro-estacas.

Para profundidades iguais ou superiores a 6 m, a tensão calculada e indicativa poderá ser incrementada para os 1000 kPa consoante profundidade e tensão de confinamento, não prescindindo a mesma de uma análise adequada aos assentamentos admissíveis para o projecto em questão.

HOTEL PRAIA GRANDE

Rockbuilding

064.21.PRJ

PÊRA, SILVES

A ocorrência desta ZG com outra subjacente de resistência inferior, deve ser tida em consideração aquando da definição do tipo de fundação e respectivo bolbo de tensões gerado.

A amostra de solo colhida nesta ZG, com referência SL_116.21 corresponde a solo do tipo SM – Areia siltosa, segundo a classificação Unificada, e A-4 (2), segundo a classificação AASHTO. A percentagem de finos foi de 43,2% e o teor de água (W) 20,8 %, sendo classificada como Não Plástica.

Esta ZG foi intersectada em todas as sondagens realizadas. Ocorrendo a uma profundidade máxima identificável de cerca de 22,5 m na zona de influência da sondagem S10 e mínima de 1,5 m nas sondagens S1_Pz a S3, S5 a S8 e S11.

O Quadro XIII apresenta os parâmetros geotécnicos para cada uma das ZG's definidas.

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

Quadro XIII – Parâmetros Geotécnicos para cada uma das ZGs

Zona Geotécnica	N_{SPT}	Peso Volúmico γ (kN/m³)	Ângulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4 – 7	14	23	1	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 – 26 (40)	15	26	1	6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 – 48	18	28	ı	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33	-	40	650 – 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

^{* –} Valor referente a profundidade igual ou superior a 6 metros.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

4.2 Análise Estatística

A partir dos valores de N_{SPT} obtidos nos trabalhos de prospecção e com o objectivo de melhor compreender singularidades no comportamento geológico e geotécnico das diferentes zonas geotécnicas realizou-se a análise estatística do presente capítulo.

No Quadro XIV apresentam-se os parâmetros estatísticos referentes aos valores de N_{SPT}.

Quadro XIV – Parâmetros estatísticos, N_{SPT}, para cada uma das ZGs.

	N _{SPT} medido					
	ZG1A ZG1B ZG2 ZG					
Amostra, N [Un.]	3	10	9	69		
Média, X _m	6	21	38	59		
Coeficiente de variação, C _v	0,27	0,36	0,19	0,04		
$X_{ci} = X_m (1 - 0.5C_v)$	5	17	34	58		
$X_{cs} = X_m (1 + 0.5C_v)$	7	25	41	60		

 $N - n^o$ de dados obtidos/utilizados; $X_m - M$ édia de N_{SPT} ; $C_v - Coeficiente de variação (DesvioPadrão/<math>X_m$); $X_{ci} - V$ alor característico inferior de N_{SPT} ; $X_{cs} - V$ alor característico superior de N_{SPT}

4.3 Condições de fundação

A avaliação da capacidade de carga foi realizada, considerando:

- Fundações directas: sapatas quadradas com 2,0 x 2,0 m até aos 3,0 m de profundidade e pegões quadrados com 1,5 m x 1,5 m a partir dessa profundidade;
- Cargas verticais e centradas.

O valor da tensão de segurança à rotura obtido pelo cálculo foi aplicado na avaliação do assentamento imediato decorrente da solicitação do terreno.

O cálculo da tensão de segurança à rotura, q_{ult}, foi realizado com base na formulação de Meyerhof (1963), exposta por Bowles (1988).

$$q_{ult} = c*Nc*sc*dc + q*Nq*sq*dq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma$$

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

PÊRA, SILVES

em que:

c – valor de cálculo da coesão;

q – valor de cálculo da tensão efectiva imediatamente acima da cota de fundação;

B – largura da fundação;

γ– peso volúmico efectivo do solo;

Nc, Nq, N γ – factores de capacidade de carga, função do valor do ângulo de atrito, ϕ ;

sc, sq, sy – factores empíricos, adimensionais, dependentes da geometria do órgão de fundação;

dc, dq, d γ - factores empíricos, adimensionais, dependentes da relação profundidade/dimensão do órgão de fundação.

O valor assim obtido é testado em relação à deformabilidade. Para tal foi usada a fórmula proposta por Timoshenko&Goodier (1951), a partir da Teoria da Elasticidade, para assentamento imediato:

$$\Delta H = q^*B^*(1-\mu^2)/Es^*Is^*IF$$

em que,

 ΔH – assentamento;

q – tensão aplicada;

B – largura da fundação;

 μ – coeficiente de Poisson;

Es – módulo de deformabilidade;

Is, IF – factores que dependem da geometria da sapata, espessura do estrato compressível, coeficiente de Poisson e profundidade de fundação.

Para a ZG1A, dado o estado descomprimido dos materiais nela presentes, os mesmos apresentam-se como pouco adequadas para utilização como terrenos de fundação. No entanto, para a profundidade de cálculo de 1,5 m, e para a tensão admissível calculada de 100 kPa, a avaliação dos assentamentos conduz a valores na ordem 12-13 mm.

Para a ZG1B, a tensão admissível calculada é da ordem dos 150 kPa. Para as tensões determinadas e a uma profundidade de cálculo de 1,5 m, a avaliação dos assentamentos conduz a valores na

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

ordem dos 16 mm. Pode ser solicitada através de métodos directos na forma de sapatas ou pegões, ou na forma de métodos indirectos na forma de estacas ou micro-estacas, cumprindo os valores de resistência e tensões indicados. Realce-se que esta zona foi identificada, no local de influência da sondagem S10, associada a uma zona de incidência de carsificação, pelo que cuidados especiais devem ser tomados aquando da definição dos elementos de fundação nas imediações.

Para a zona ZG2, a tensão admissível é da ordem dos 500 kPa. Tendo em conta profundidade de cálculo de 3 m, a avaliação dos assentamentos conduz a valores na ordem dos 9 mm. Pode ser solicitada como terreno de fundação tanto por métodos directos na forma de sapatas ou pegões, como por métodos indirectos na forma de estacas ou microestacas.

Para a ZG3, a tensão admissível calculada varia dos 650 a 1000 kPa, dependendo da profundidade e estado de confinamento. Para a tensão determinada de 650 kPa e a uma profundidade de cálculo de 3 m, a avaliação dos assentamentos conduz a valores na ordem dos 8-9 mm. Para a tensão de cálculo de 1000 kPa, a uma profundidade de 6 m, a avaliação dos assentamentos conduz a valores na ordem dos 8-9mm mm. Pode ser solicitada como terreno de fundação tanto por métodos directos na forma de sapatas ou pegões, como por métodos indirectos na forma de estacas ou microestacas. A ocorrência desta ZG com outra subjacente de resistência inferior, deve ser tida em consideração aquando da definição do tipo de fundação e respectivo bolbo de tensões gerado.

As tensões calculadas só são válidas para as condições de confinamento actuais e tendo em conta os pressupostos geométricos assumidos neste relatório, que deverão ser considerados como exemplificativos. Assim, os valores de tensão admissível e deformação dados referem-se às condições da camada em questão e não entram em linha de conta com variações dos parâmetros em profundidade, que, quando contidas no bolbo de tensões gerados pelos órgãos de fundação a projectar, devem, em sede de projecto, ser tidas em conta, na proporção da sua influência nesses mesmos bolbos.

Os terrenos em estudo quando expostos às condições de escavação durante períodos de tempo prolongados poderão sofrer uma descompressão que irá conduzir a uma perda de resistência.

HOTEL PRAIA GRANDE

064.21.PRJ

PÊRA, SILVES

Durante a obra, o acompanhamento dos trabalhos de fundação por um técnico de geotecnia é recomendável, particularmente no que se refere à análise das singularidades que poderão naturalmente surgir durante a intervenção.

4.4 Escavabilidade e Contenção

Os resultados da campanha de prospecção efectuada permitem obter uma caracterização aproximada da escavabilidade dos materiais. A selecção do método de escavação, se previsto, depende essencialmente da escavabilidade e do rendimento da maquinaria utilizada.

De acordo com os dados recolhidos nas sondagens, é expectável que os materiais ocorrentes possam ser removidos com recurso a máquinas pesadas do tipo giratória. No entanto, na ocorrência de zonas calcareniticas ou mais consolidadas deverá ser contemplada a necessidade de recorrer a meios de grande capacidade equipados com rippers e/ou martelo.

Relativamente à contenção, para escavações verticais e superiores ou iguais a 1,2 metros, recomenda-se a utilização de entivações simples. Caso a envolvente o permita poderão ser adoptados taludes com inclinação de 40°- 45° limitados a profundidades de 3 m. Em zonas de escavação a profundidades superiores, sugerem-se métodos activos de contenção como paredes moldadas ou "muros de berlim".

Dada a localização da intervenção prevista a mesma não deverá ter influência em edifícios vizinhos.

Relativamente à presença de água, não foi medida a presença de um nível de água instalado nos piezómetros, estando os mesmos seco nos dias das leituras. No entanto, e em função dos eventuais caudais e das circunstâncias em que se manifestem, deverão ser tomadas medidas de protecção, tais como:

- Aplicação de geodrenos em ressurgências localizadas de caudal significativo;
- Bombagem da água afluente à fundação.
- Protecção de taludes provisórios com filtros, geotêxtil.

Pela Synege, 16 de Dezembro de 2021

André Costa Engº Geólogo Jónatas Rodrigues Engº Geólogo

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE

064.21.PRJ

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

Referências Bibliográficas

- "Carta Topográfica de Lagoa" Escala 1:25 000, № 604. Serviço Cartográfico do Exército, Edição 2-S.C.E.P. (1979);
- Coduto, D. (1994), "Foundation Design Principles and Practices". Prentice Hall, Inc, Englewood Cliffs, New Jersey.
- Duncan, C.W. (1999), "Foundations on rock". E e FN SPON.
- Look, B.; "Handbook of Geotechnical Investigation and Design Tables". Taylor&Francis, 2007.
- Marques, F. (1997) As arribas do litoral do Algarve. Dinâmica, processos e mecanismos.
 Dissertação de Doutoramento em Geologia, Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa, 556p.
- Matos Fernandes, M. (2011), "Mecânica dos Solos Introdução à Engenharia Geotécnica".
 FEUP edições, Porto.
- NP EN 1998-1:2010, Eurocódigo 8 Projecto de estruturas para resistência aos sismos Parte
 1: Regras gerais, acções sísmicas e regras para edifícios, Instituto Português da Qualidade;
- Rocha, R. B., et al (1981) Carta Geológica 1:50.000, nº 52–B, (Albufeira). Direcção Geral de Geologia e Minas, Serviços Geológicos de Portugal, Lisboa;
- Rocha, Rogério B., et al (1989) Notícia explicativa da Folha 52-B (Albufeira). Serviços
 Geológicos de Portugal, Lisboa;
- Price, Jeff (2016) Implications Of Groundwater Behaviour On The Geomechanics Of Rock Slope Stability, Srk consulting.

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

PÊRA, SILVES

Anexos

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

PÊRA, SILVES

ANEXO I - Boletins de Sondagens ²

² O presente anexo foi anexado e enviado como PDF

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

ANEXO II - Perfis Interpretativos e Planta de Localização dos Trabalhos ³

³ O presente anexo foi anexado e enviado como PDF

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

PÊRA, SILVES

ANEXO III - Boletins de Ensaios Laboratoriais ⁴

⁴ O presente anexo foi anexado e enviado como PDF

П		E	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	EM				
		(()	YNFGF	Cliente: Rockbu	ildin	g											
	ч		$\mathcal{L}(\mathcal{L})$	VINEGE	Localização: P				de									
					Ref ^a . Projecto:	064	.21.PF	₹J										
				30/11/2021	Equipamento: F	rast	te Mul	idrill S	SL							SONE	AGE	ΞM
\vdash				N/11/2021	Tipo de Furação: Rotary S1_Pz													
1			90 °		Diâmetro de Furação: 86 mm													
Col	mpri	men	to:	9 m	Diâmetro de Rev	esti	mento): ⁹	98 m	m								
Œ						١								٦				
) E	Α	FIA				٩ÇÃ		ÃO		SPT) [5]	%RQI	0 🔃		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	∢			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO		JF I				PENETRAÇÃO (cm)	 %RE0			
FUN	밀	RAT	LEGENDA			DE	ERA	DT O				4SE	2ª FASE	ETR.			ပ္ပ	g
PR0	N	EST	LEG	LITOLOGIA		TIPO	ALT	FR	0	30	60	1ª FASE	2ª F.	PEN	0	100	% REC	% RQD
0-			٠	Silte de cor amarelada / esbrand	uicada				1					<u> </u>				
-			급	Sino do dor amarolada y cobiario	aryana.													
1-			<u></u>															
-			<u>:-</u> -									2.0						
1			<u>:-</u>									30	60	36	5			
2-			<u>:-</u> -															
}				Areia fina de cor amarelada com calcareniticos consolidados da g	fragmentos ranulometria do													
-		- M1		seixo miúdo.														
3-		ande										41	60	22	2			
-		a Gra																
		Prai																
4-		s da																
		siltito				Rotary						25						
5—		lcarenitos e siltitos da Praia Grande - M1"				<u>X</u>							60	34	4			
-		arenit		Areia fina siltosa de cor amarela														
=		"Calca	工	Areia fina sillosa de cor amareia	ua.													
6-		. :oo	 									60		10				
		Miocénico:	= : =											"				
+		Mic	<u> </u>															
7			工:															
1																		
}												20	60	42				
8-			Τ:											1				
1			= : <u>-</u>															
			; ; ; ;															
9—			工			$ \downarrow $						60		14	4			
Ob	serv	açõ	es:	O piezómetro estava seco	no dia 02/12/2021						Lea	jenda	ı:					
		•										,						
											-							
Sor	ndad	or:	Paulo	o Alves Pág. 1 d	le 1 En	g. G	eólog	o : A	ndré	Costa								

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Refa. Projecto: 064.21.PRJ

Data de Início: 30/11/2021 Data de Fim: 30/11/2021

Inclinação: 90 º Comprimento: 9 m Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm SONDAGEM

S1_Pz

Observações:				Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo:	André Costa	

Data de Inicio: 01/12/2021 Data de Inicio: 01/12/2021 Data de Inicio: 01/12/2021 Inclinação: 90 ° Comprimento: 9 m Equipamento: Fraste Mutituriii IS. Tipo de Furação: 86 mm Diâmetro de Revestimento: 98 mm Diâmetro de Revestimento			E	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	EM				
Ref. Projecto: 064 21 PRJ Data de Inicio: 01/12/2021 Data de Inicio: 01/12/2021 Inclinação: 90 ° Comprimento: 9 m Diametro de Furação: 86 mm Diametro de Revestimento: 99 mm Diametro de Revesti				CI															
Data de Inicio: 01/12/2021 Data de Finic 01/12/2021 Data de Finic 01/12/2021 Tipo de Furação: Rotary Diâmetro de Revestimento: 99 mm Similar again 20 mm Tipo de Furação: 80 mm Diâmetro de Revestimento: 99 mm Similar again 20 mm Areas fina de cor amarelada / esbranquiçada. Areas fina de cor amarelada com fragmentos again 20 mm Areas fina de cor amarelada com		ч) /	INCUE					de									
Date Comprimento: 9 m Date Date Comprimento: 9 m Date Co																			
Inclinação: 90 ° Comprimento: 9 m						Equipamento:	rast	e Mult	idrill	SL							SONE	AGE	ΞM
Comprimento: 9 m Diametro de Revestimento: 68 mm	\vdash																:	S2	
Note 1																			
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina siltosa de cor amarelada. Areia fina siltosa de cor amarelada.		прп	men	10.	9 111	Diämetro de Rev	esti	mento): E	8 mr	n								
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarenticos conscidiados da granulomatria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos conscidiados da granulomatria do seixo mixido. Areia fina siltosa de cor amarelada. Areia fina siltosa de cor amarelada.	Œ						့								Έ				
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina siltosa de cor amarelada. Areia fina siltosa de cor amarelada.	ADE	NA	AFIA				ĄĊĄ		ŠÃO		SPT				၁	%RQI) <u> </u>		
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina siltosa de cor amarelada. Areia fina siltosa de cor amarelada.	PD (E Á(IGR	ΑC			E E	Į ČŽ	<u>X</u>						ΑÇÃ	%RE			
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulomatria do seixo mixido. Areia fina siltosa de cor amarelada. Areia fina siltosa de cor amarelada.	Ę	띨	IRA	SEN			吕	ER	ACT.				ASE	ASE	ÉT,			2	αD
Silte de cor amarelada / esbranquiçada. Areia fina de cor amarelada com fragmentos calcarentitos consolidados da granulometria do seixo miúdo. 29 60 24 Areia fina siltosa de cor amarelada.	PR	Ř	ES.	LEC	LITOLOGIA		TIP	AL.	FR	0	30	60	1ª F	2ª F	PE	0	100	% R	% R
Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. 26 60 24 Areia fina siltosa de cor amarelada.	0			<u>.</u> -	Silte de cor amarelada / esbrand	uiçada.													
Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulometria do seixo mixido. Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulometria do seixo mixido. 26 60 24 Areia fina siltosa de cor amarelada.	-			<u>:-</u>															
Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. 26 60 24 Areia fina siltosa de cor amarelada.	-			<u>:-</u>															
Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. 26 60 24 Areia fina siltosa de cor amarelada.	1-			<u>:-</u>															
Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. Areia fina de cor amarelada com fragmentos calcareníticos consolidados da granulometria do seixo mixido. 26 60 24 Areia fina siltosa de cor amarelada.	_			<u>:-</u> -									32						
Areia fina de cor amarelada com fragmentos calcarenticos consolidados da granulometria do seixo miudo. 26 60 24 4	-			÷÷											30	â			
a calcaramiticos consolidados da granulometria do seixo miúdo. 28 60 24 4 -	2—			$\vdots =$															
6	-				Areia fina de cor amarelada com calcareniticos consolidados da g	ı fragmentos ıranulometria do													
6			- M1																
6	3-		nde										29	60	2.	4			
6	=		Gra																
6	4		Praia																
6	-		s da																
6	7		iltitos				tary						60		1.	4			
6	5—		s e s				8												
6	_		enito	 -: I	Areia fina siltosa de cor amarela	da.													
7—	-		alcai																
7—	6-		o: "C	= : <u>-</u> :									28						
7—	1		énic											60	40	D			
9—————————————————————————————————————	_		Mioc	工															
8— — — — — — — — — — — — — — — — — — —	7-			= : <u>-</u> -															
8— — — — — — — — — — — — — — — — — — —	=			 															
9——————————————————————————————————————	_			工									21	60	36	6			
- Company (1997)	8-			= : <u>-</u> -															
- Company (1997)	-			. : : : :															
- Company (1997)	-			王															
	9-			= : <u>-</u>									22	60	3.	7			
	_													00	1 3	1			
Observações: Legenda:	Ob	serv	açõ	es:								Leg	jenda	:					
Sondador: Paulo Alves Pág. 1 de 1 Eng. Geólogo: André Costa	Son	ndad	or:	Paul	o Alves Pág. 1 d	le 1 En	g. G	eólog	o : A	ndré	Costa	1							

BOLETIM DE SONDAGEM

Cliente: Rockbuilding

Localização: Pêra, Praia Grande **Refª. Projecto:** 064.21.PRJ

Data de Início: 01/12/2021 Data de Fim: 01/12/2021

Comprimento: 9 m

Equipamento: Fraste Multidrill SL

SONDAGEM S2

Inclinação: 90 °

Tipo de Furação: Rotary

Diâmetro de Furação: 86 mm

Diâmetro de Revestimento: 98 mm

1,5 m 52 3 m **S2** 9 m **S2** 4,5 m 52 6 m

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa	

		Е	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	ΕM				
		1	~\	YNEGE	Cliente: Rockbu	ildin	g											
	ш)	Y	Localização: P	êra,	Praia	Grand	de									
					Refª. Projecto:	064	.21.PF	RJ.										
Dat	a de	Iníc	io:	01/12/2021	Equipamento: F	rast	te Mul	tidrill	SL							SONE	AGE	ΞM
Dat	a de	Fim	ı: 01	/12/2021	Tipo de Furação:	R	otary									1	S3	
Inc	linaç	ão:	90 9		Diâmetro de Fur		-	6 mm									33	
Coi	mpri	men	to:	9 m	Diâmetro de Rev): ²	8 m	m								
						<u> </u>	Г		П				Π	Π	l			
Ε.		_				βŠ								<u>ق</u>	l			
M	'GO/	≱E				βĞ	0	Ğ		SPT				ÃO (%RQ	ט		
ğ	DE Á	빌	DA			<u></u>	AÇĂ	<u>\$</u>					l	RAÇ	%RE	С		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO				1ª FASE	2ª FASE	PENETRAÇÃO (cm)			% REC	% RQD
Ŗ	Ĭ	ES	LE	LITOLOGIA		Ħ	AL.	R	0	30	60	1ª	2ª I	F	0	100	% B	% F
0			<u>.</u> -	Silte de cor amarelada / esbrand	uiçada.													
-			<u>:-</u> -															
1			<u>:-</u>															
1-			<u></u>															
-			<u> </u>															
			<u>:-</u> :									38	57	7 4!	5			
2-			÷÷] "	1			
1			•	Areia média de cor amarelada c	om fragmentos													
-		11.	•••	calcareniticos consolidados da g seixo miúdo ao calhau.	ranulometria do													
3—		e - N	•••									60			7			
_		and																
-		ia G																
4		siltitos da Praia Grande - M1"	- : <u>-</u> :	Areia fina siltosa de cor amarela	da.													
+		s da	 															
-		siltito	工			Rotary						23	l .					
5		S e s	= : =			%							60	39	9			
-		alcarenitos e	_ T															
1		alcar	工															
6—		ပ္	= : <u>=</u>															
•		Miocénico:	王:									21	60	 40				
_		jocé	= : I : 工 :															
		Σ	 : : :															
7-			工															
			= : =									30						
-													60	3	3			
8-			士															
-			_ _	Silte argiloso de cor amarelada.														
-																		
9—												32	60	3:				
_			I T -			Ľ							60	1 3.	1			
Ob	serv	açõ	es:								Leg	jenda	1:					
Sor	ndad	or.	Paul	o Alves Pág. 1 d	le 1 Fn	u G	eálad	O. V	ndrá	Costa	1							
	au	٠	aul	,	- · LII	ჟ. ∪	July	J. A	iiuie	Justa	1							

Data de Início: 01/12/2021

Data de Fim: 01/12/2021

Inclinação: 90 º

Comprimento: 9 m

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande

Refa. Projecto: 064.21.PRJ

Equipamento: Fraste Multidrill SL SONDAGEM

S3

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa	

				HARIA + GEOLOGIA + ENERGIA				В	OLE	TIM D	E S	ONE	AG	EM				
		($C \setminus$	/NEGE	Cliente: Rockbu		_											
	ч) /	INCUE	Localização: P				de									
					Refª. Projecto:	064	.21.PI	₹J										
				25/11/2021	Equipamento: F	ras	te Mul	tidrill	SL							SONE	AGE	ΞM
\vdash				/11/2021	Tipo de Furação:		Rotary										S4	
			90 °		Diâmetro de Fur			6 mm										
Cor	npri	men	to:	13,5 m	Diâmetro de Rev	esti	ment	o: ⁹	98 m	m								
Έ						۱,								Ē				
DE (Ϋ́	FIA				ĄČĄ		Ão		SPT				0 (כו	%RQI	D		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	₫			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO		01 1				PENETRAÇÃO (cm)	 %RE0			
FUN	EL D	RAT	LEGENDA			믬	<u> </u> ₩	L CT				1ª FASE	2ª FASE	ETR		_	ည္က	g
PRO	NÍV	EST	LEG	LITOLOGIA		₽	\	₹	0	30	60	1ª F,	2ª F	PEN	0	100	% REC	% RQD
• <u> </u>			<u>.</u> -	Argila arenosa de cor castanha	escura.			<u> </u>										
			<u>:-</u> -	.														
1-			$\stackrel{\cdot}{\div}\stackrel{\cdot}{\div}$															
=			<u> </u>									8	19	4:				
2—																		
=			= : =	Areia fina siltosa de cor amarela	da.													
3—												10	46	45	5			
_			Ξ:															
4—		- M1	= =															
		ande	- : -									14	40	45	5			
-		a Gra	=::∓ —=	Silte argiloso de cor amarelada.														
6		Praia	_ _ -	one arginoss de sor amarciada.														
-		s da	 									14	34	45	5			
7		siltitos da Praia Grande - M1"	···	Areia fina de cor amarelada com	ragmentos	Rotary												
=		O O		calcareniticos consolidados da g seixo miúdo.	ranulometria do	 						13						
8-		alcarenitos											26	45	5			
=				Silte argiloso de cor amarelada o	com laivos													
9_		Miocénico: "C		acinzentados.								14						
-		cénic											48	49	5			
10 🚽		Mio	- T															
=			- -									12	60	4				
11 –			- T										"]]				
=																		
12 —												14	60	44	4			
=			- +															
13 —			- <u>+</u> -															
=			 			$ \downarrow$						12	60	42	2			
	serv	acõ	P6.								Lian	iord-						
	JUI V	ayu									Leg	jenda						
											1							
Son	dad	or:	Paulo	Alves Pág. 1 o	le 1 En	g. G	eólog	jo: A	ndré	Costa								

Data de Início: 25/11/2021

Data de Fim: 26/11/2021

Comprimento: 13,5 m

Inclinação: 90 º

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande

Ref^a. Projecto: 064.21.PRJ Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm SONDAGEM

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Cost	a

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				В	DLE	ETIM D	E S	ONE	AG	EM				
		($C \setminus$	YNEGE	Cliente: Rockbu		_											
	ч	١,)/	INCUE	Localização: P				de									
					Refª. Projecto:	064	.21.PF	₹J										
				30/11/2021	Equipamento: F	rast	te Mult	idrill	SL							SONE	DAGE	ΕM
Dat	a de	Fim	: 30	0/11/2021	Tipo de Furação:	R	otary										S5	
			90 9		Diâmetro de Fur	ação) : 8	6 mm										
Cor	mpri	men	to:	9 m	Diâmetro de Rev	esti	mento): ⁹	8 m	ım								
٦																		
Ē.	4	≰				ŞÃO								(E)	 %RQ	n 🖳		
DAG	ÁGU	RA				JRA	<u>۾</u> ا	ĄČ		SPT				Ř				
N O	Н	ATIG	NDA			Ē	\ ¥ S	불				щ	<u>ښ</u>	Į <u>₹</u>	%RE	С		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO		20		1ª FASE	2ª FASE	PENETRAÇÃO (cm)	0	100	% REC	% RQD
_	z	ш		LITOLOGIA		F	∢	ш	0	30	60	-	78	Δ.	<u> </u>	100	%	%
•			\div	Silte de cor amarelada / esbrand	uiçada.	\bigcap												
1			÷															
			<u>::</u>															
'-			==															
-			Ξ÷									17						
2—			÷										60	39	9			
					<u></u>													
7		<u>. </u>		Areia fina de cor amarelada com calcareniticos consolidados da c	rragmentos ranulometria do													
3—		, M	:::	seixo miúdo.														
-		nde										35	60	23	3			
1		e siltitos da Praia Grande - M1"																
4_		Praia	:::·															
-		da																
-		iltitos				Rotary						60		1.	1			
5—		s e s				- Ro												
+		alcarenitos	<u></u>	Areia fina siltosa de cor amarela														
-		alcar	工:	7 Tela fina sitosa de cor amarcia	uu.													
6-		ု	= : =									39						
-		énico	<u></u>							H		35	60	3.	1			
+		Miocénico:	士:															
7—		 	= : =															
			上 															
-												33	60	32	2			
8-			= : =															
_				Silte argiloso de cor amarelada.														
}																		
9-												17						
7			- ₋ -			$ \downarrow $							60	3	7			
Оь	serv	açõ	es:								Lec	jenda	1:					
											`							
											-							
Sor	ndad	or:	Paul	o Alves Pág. 1 d	le 1 En	g. G	eólog	o : A	ndré	é Costa								

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Refa. Projecto: 064.21.PRJ

SONDAGEM

S5

Data de Início: 30/11/2021 Data de Fim: 30/11/2021

Inclinação: 90 º Comprimento: 9 m Equipamento: Fraste Multidrill SL Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm

Observações:				Legenda:	
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo:	André Costa		

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	EM				
		($^{\prime}$	NEGE	Cliente: Rockbu	ildin	g											
	ш		7	Y	Localização: P	êra,	Praia	Grand	de									
-					Refª. Projecto:	064	.21.PF	3J										
				29/11/2021	Equipamento: F	ras	te Mul	tidrill	SL							SONE	AGE	ΞM
Dat	a de	Fim	: 30)/11/2021	Tipo de Furação:	F	Rotary	e Rota	ação	ı							S6	
Inc	linaç	ão:	90 °		Diâmetro de Fur	ação	o : 8	6 mm										
Cor	npri	men	to:	19,5 m	Diâmetro de Rev	esti	imento	o : 9	98 m	m								
							T		П									
E E	_	4				ÃO								cm)				
AD	/ng	¥E				RAÇ	0	Ğ		SPT				ÃO (%RQD			
M	DE Á	빌	Δ			E.	ĄČĄ	🐕						RAÇ	%REC			
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO				lª FASE	2ª FASE	PENETRAÇÃO (cm)			% REC	% RQD
PR	N	ES	Ē	LITOLOGIA		TIP	AL	E	0	30	60	1a F	2ª I	PE	0	100	% B	% F
-0			<u></u>	Silte de cor amarelada / esbrand		\wedge		П										
1-			<u>:-</u> -															
. =												42	60	24				
2			<u>.</u>											-				
3—				Areia fina de cor amarelada com calcareniticos consolidados da g								27						
=				seixo miúdo.								- '	60	38	3			
4																		
5												33	60	34				
=		<u>_</u>	王	Areia fina siltosa de cor amarela	da, por vezes com													
6-		W -	= :	restos de conchas.								21	60	36				
7—		ande	. . = : =															
=		a Gr	Τ:									19	55	45				
8-		e siltitos da Praia Grande - M1"	= <u>÷</u> ∓	Silte argiloso de cor amarelada o	oom fragmentos									"				
9-		s da		calcareniticos consolidados da g	ranulometria do	Rotary			Ш			60		14				
. =		Iltitos	- - -	seixo miúdo ao grosseiro.		<u>&</u> 												
10		ses	- - -									30						
11		alcarenitos	- - -										60	35				
12		care	Ė	Silte de cor amarelada com laivo	s acinzentados.													
"-		္										12	33	45	5			
13		Miocénico:	<u>:-</u> -															
14		océr	<u>: </u>									11	51	45	5			
=		Ξ	==															
15												9	60	34				
16																		
- =												5		,				
17			<u>:-</u>										30	45				
18						\downarrow		<u> </u>				60						
=			•••	Calcarenito de cor amarelada.		ção	W3a	F3 a										
19						(Rotação)	W4	F4									80	50
4						A		<u> </u>				9	60	22	2		<u> </u>	
Ob	serv	açõ	es:								Leç	jenda	:					
											-							
Son	dad	or:	Paul	o Alves Pág. 1 d	le 1 En	g. G	eólog	ю: А	ndré	Costa								

Data de Início: 29/11/2021

Data de Fim: 30/11/2021

Comprimento: 19,5 m

Inclinação: 90 º

BOLETIM DE SONDAGEM

Cliente: Rockbuilding Localização: Pêra, Praia

Localização: Pêra, Praia Grande **Refª. Projecto:** 064.21.PRJ

Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary e Rotação

Diâmetro de Furação: 86 mm

Diâmetro de Revestimento: 98 mm

SONDAGEM

Observações:				Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo:	André Costa	

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				В	DLE	ETIM C	E S	ONE	AG	EM				
		(C I	NEGE	Cliente: Rockbui		-											
	ч) /	INEGE	Localização: P				de									
_				24.442.022.4	Refª. Projecto:											T		
				01/12/2021 /12/2021	Equipamento: F			tidrill	SL							SON	IDAG	EM
\vdash					Tipo de Furação:		otary										S7	
			90 ° to :		Diâmetro de Fura			6 mm										
	ПРП	IIIeII	10.	5 111	Diâmetro de Rev	esti	mento): E	98 m	ırm								
Ξ						Q								Έ				
ADE	3UA	AFIA				ĄŻV		ŠÃO		SPT				ပ္ခဲ့	%RQ	D 🔃		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	8			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO					l	PENETRAÇÃO (cm)	%RE			
PFU!	Œ	TR	LEGENDA			O DE	ER/	ACT				lª FASE	2ª FASE	Ei			% REC	% RQD
Ŗ	Ŋ	ES	Ë	LITOLOGIA		ΤΡ	AL.	꿃	0	30	60	1ª F	2ª F	뿝	0	10	0 %	% R
0			<u></u>	Silte de cor amarelada / esbranc	uiçada.	$ \uparrow $												
-			ΞΞ															
7																		
1-			$\stackrel{\cdot}{=}$															
			ΞΞ									41						
			ΞΞ										60	2.	4			
2—			<u>:-</u> -															
=		<u>.</u>		Areia fina de cor amarelada com calcareniticos consolidados da g	ı fragmentos ıranulometria do													
3_		- M1	:::	seixo miúdo.											,			
-		ande										60						
-		a Gr																
4-		Prai		Areia fina siltosa de cor amarela fragmentos calcareniticos consc	da, por vezes com													
=		e siltitos da Praia Grande - M1"	T	granulometria do seixo miúdo.	ilidados da													
-		siltitc	Ξ			Rotary						15	60	3.	,			
5-		os e	= : ユ エ:			الآ												
1		alcarenitos	::: <u>:</u>															
_		"Calca	王															
6-												31						
-		Miocénico:	= : =										60	3.	1			
-		Μ̈́	프	Silte de cor amarelada.														
7-			\vdots															
=												13						
8—			==										60	2				
-				Aroja módia do earlada														
7			•••	Areia média de cor amarelada o calcareniticos consolidados da o seixo miúdo ao calhau.														
9_				seixo miudo ao camau.								22						
+						$ \downarrow $						33	60	3.	4			
Ob	serv	açõ	es:								Leg	genda	ı:					
											`							
_					1-4	_	,.				+							
Sor	ndad	or:	Paul	Alves Pág. 1 c	ie i En	g. G	eolog	o : A	ndré	Costa								

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Ref^a. Projecto: 064.21.PRJ

Data de Início: 01/12/2021 Equipamento: Fraste Multidrill SL Data de Fim: 01/12/2021 Tipo de Furação: Rotary

SONDAGEM **S7**

Inclinação: 90 º Comprimento: 9 m Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa	1

				HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	EM				
		($C \setminus$	MEGE	Cliente: Rockbui		_											
	ч) /	INCUE	Localização: P				de									
					Ref ^a . Projecto:													
				02/12/2021 1/12/2021	Equipamento: F	rast	te Mul	tidrill S	SL							SONE	AGE	ΞM
\vdash					Tipo de Furação:		otary										S8	
			90 °		Diâmetro de Fur			6 mm										
Col	npri	men	το:	10,5 m	Diâmetro de Rev	esti	mento): E	8 m	m ———								
Œ														(F)				
)DE	Α̈́	ΥFΙΑ				AÇÃ		ÃO		SPT) (c	%RQI	0		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	4			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO		01 1				PENETRAÇÃO (cm)	 %RE0			
J.	밉	FA	LEGENDA			J DE	ER	J.				1ª FASE	2ª FASE	ETR			ပ္ထ	g
PRC	NÍ	ES	LEC	LITOLOGIA		ыш	ALI	FR	0	30	60	1ª F	2ª F	νΞd	0	100	% REC	% RQD
0_			Ŀ÷	Silte de cor amarelada / esbrand		$\overline{\mathbb{A}}$												
-			<u>:-</u> -															
1_																		
Ή			<u>:-</u>															
-												21	60	30				
2-																		
-			\cdots	Areia fina de cor amarelada com calcareniticos consolidados da g														
3-				seixo miúdo.	grandiometria do									١.				
_		. M										60		14	4			
-		nde .																
4-		Gra																
-		- raia										60		1;	3			
5		da																
_		iltitos		Silte de cor amarelada.		Rotary -												
-		alcarenitos e siltitos da Praia Grande - M1	<u>:</u>			- Rot												
6-		enito										29	60	37	7			
=		alcar											"					
7_		ပ္	•••	Areia média de cor amarelada c														
-		énico		calcareniticos consolidados da g seixo miúdo ao calhau.	granulometria do													
-		Miocénico:	•••									32	49	4:	5			
8-																		
=				Silte de cor amarelada.														
9_												28						
=													60	27	7			
			\div															
10 —																		
7												26		,	7			
			<u> </u>					<u> </u>					60	37				
Ob	serv	açõ	es:								Leg	jenda	:					
Sor	ndad	or:	Paulo	Alves Pág. 1 c	de 1 En	g. G	ieólog	o : A	ndré	Costa	1							
		-				, ,	9		•									

Data de Início: 02/12/2021

Data de Fim: 02/12/2021

Comprimento: 10,5 m

Inclinação: 90 º

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Ref^a. Projecto: 064.21.PRJ

Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm SONDAGEM

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa	1

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	EM				
l		1 (\cap	NEGE	Cliente: Rockbu	ildin	g											
	ч		\mathbf{C}	INECTE	Localização: P				de									
				. (Refª. Projecto:	064	.21.PF	RJ										
				26/11/2021	Equipamento: F	rast	e Mult	idrill	SL							SONE	AGE	EM
Dat	a de	Fim	: 26	5/11/2021	Tipo de Furação:	po de Furação: Rotary S9												
Inc	linaç	ção:	90 °		Diâmetro de Fur	ação): 8	3 mm										
Coi	mpri	men	to:	7,5 m	Diâmetro de Rev	esti	mento	: 9	8 m	m								
ె																		
E (F	4	≰				Ř								(Cm)	%RQI	n 🗔		
DAD	∳GU	RAF				<u>₹</u>	او ا	ĄĊĄ		SPT				\ X				
	DE,	ATIG	ΔĎ			ᄪ	\X X X					ш	بيرا	\ <u>\</u>	%RE	C		
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO				1ª FASE	2ª FASE	PENETRAÇÃO (cm)		400	% REC	% RQD
	Ē	й		LITOLOGIA		Ħ	₹	ш	0	30	60	<u>_</u>	2 _a	<u> </u>	0	100	%	%
•			\div	Silte de cor amarelada / esbrand	uiçada.													
4			Ξ÷															
1			ΞΞ															
1_			ĖΞ															
+			<u>:-</u> :															
			<u>:-</u>									19						
-			<u>::</u> :										40	4	5			
2-																		
]				Areia fina siltosa de cor amarela	da.													
-		- g	Ξ															
3—			F : =															
-		aia (工: =::=									27	59	4:				
		da P	Ξ:										56] "	1			
-		Miocénico: "Calcarenitos e siltitos da Praia Grande - M1"	⋾∓	Silte argiloso de cor amarelada o	com fragmentos	l V												
4-		e sill		calcareníticos consolidados da o seixo miúdo ao grosseiro.		Rotary												
-		litos		3		$ \cdot $												
-		care	<u>-</u> -									60		10				
5—		\[\begin{array}{c} \cdot \end{array}\]																
-																		
		océr																
-		Σ	<u>-</u>															
6-												31	60	2:	2			
-																		
-																		
7—																		
-																		
												21						
+			- <u>-</u> -			$ \downarrow $							60	4.	4			
[<u>C</u>			20:								T.						•	
"	serv	aço	es.								Leg	jenda	1:					
											1							
Sor	ndad	or:	Paul	o Alves Pág. 1 o	le 1 En	g. G	eólog	o: A	ndré	Costa								
1											1							

Data de Início: 26/11/2021

Data de Fim: 26/11/2021

Inclinação: 90 º

Comprimento: 7,5 m

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Refa. Projecto: 064.21.PRJ

SONDAGEM Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm

Observações:				Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo:	André Costa	

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				В	DLE	TIM D	E S	ONE	AG	EM				
		1 (\cap		Cliente: Rockbui		_											
			$\mathcal{I}(\mathcal{C})$	NEGE	Localização: Po				de									
				. (Refª. Projecto:	064	.21.PF	۲J										
				24/11/2021	Equipamento: F	rast	te Mult	tidrill	SL							SONI	DAGE	ΞM
Dat	a de	Fim	: 26	3/11/2021	Tipo de Furação:	R	otary										S10	
Incl	linaç	;ão:	90 °		Diâmetro de Fura	ação) : 8	6 mm										
Cor	npri	men	to:	25,5 m	Diâmetro de Rev	esti	mento): S	98 mr	m								
									Ι									
(m)	_	А				ÃO								cm)				
AD	'GO/	ZA FI				RAÇ	0	Ğ		SPT				ÃO (%RQD			
NDIC	DE Á	TIGE	Δ			F	AÇĂ	₹						RAÇ	%REC			
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO				1ª FASE	2ª FASE	PENETRAÇÃO (cm)			% REC	% RQD
PR	ΝĺΛ	ES	Ë	LITOLOGIA		ΔIL	AL	띪	0	30	60	1a F	2ª F	PE	0	100	%	% К
0 =			<u></u>	Silte de cor amarelada / esbrand	uicada.			Ι										
1 1 1 2 1			\vdots		•													
2			<u> </u>	/					-	+		6	23	4	5			
3				Areia fina de cor amarelada com calcareniticos consolidados da g								15						
			•••	seixo miúdo.								١٩	60	38	3			
5			 	Areia fina siltosa de cor amarela	da.							20	60	3:	3			
5-			- : <u>-</u>															
6			<u>:</u> : ±									5	7	4	5			
7-			Τ-	Silte argiloso de cor amarelada o	om fragmentos													
8=		Σ	_ _ _	calcareníticos consolidados da g seixo miúdo ao calhau.	ranulometria do							1	8	4	5			
9_		ande	_ _ _									3	,	4:				
10		siltitos da Praia Grande - M1"	- -	Silte argiloso de cor amarelada,	oor vezes com									"				
11		Prais	- ₋ -	fragmentos calcareníticos conso granulometria do seixo miúdo ao	lidados da					-		21	15	4	5			
12		da	- - -	acinzentados.	calilau e laivos													
3		ltitos	- '			ary -						9	21	4	5			
13		a)	- '			Rotary						5	21	4:				
14		alcarenitos	- <u>'</u> -	Argila siltosa de cor castanha cla									21	"				
15		care		, ngila elitera de cel caetarina eli								4	13	4!	5			
16		"Cal																
17		.00										6	15	4	5			
18		Miocénico:		Calcarenito decomposto de cor o laivos avermelhados de granulo								6	40	4:				
19		ğ		argilosa.									40	1 4	1			
20			• •						-	-		1	26	4				
3			•															
21												3	15	4	1			
22			\div	Silte de cor acinzentada.								34	60	20	3			
23			<u>: : : : : : : : : : : : : : : : : : : </u>	Silte de cor amarelada.														
24			÷÷	o do oo. dindroiddd.								21	60	4	1			
25			<u>:</u>	Calcarenito decomposto de cor														
=		L	• •	granulometria arenosa a argilosa	1.	$ \Psi $						27	60	4-	4			
Ob	serv	açõ	es:	Zona de incidência de car	sificação.						Leg	jenda	:					
											-							
Son	dad	or:	Paulo	o Alves Pág. 1 o	le 1 En	g. G	ieólog	o : A	ndré	Costa								
											1							

Data de Início: 24/11/2021

Data de Fim: 26/11/2021

Comprimento: 25,5 m

Inclinação: 90 º

BOLETIM DE SONDAGEM

98 mm

Cliente: Rockbuilding Localização: Pêra, Praia Grande

Diâmetro de Revestimento:

Ref^a. Projecto: 064.21.PRJ

Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary

Diâmetro de Furação: 86 mm

SONDAGEM

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Cost	a

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				ВС	DLE	TIM D	E S	ONE	AG	ΕM				
		(\mathbb{C}^{1}	MEGE	Cliente: Rockbui		_											
	н	١,) /	INCUE	Localização: Po				de									
					Ref ^a . Projecto:	064	.21.PF	SJ										
				23/11/2021	Equipamento: F	rast	te Mult	idrill	SL							SON	DAGE	ΞM
Dat	a de	Fim	: 23	3/11/2021 	Tipo de Furação:	R	otary										S11	
Inc	linaç	ão:	90°		Diâmetro de Fura	ação) : 8	6 mm										
Coi	mpri	men	to:	9 m	Diâmetro de Rev	esti	mento): E	8 m	m								
			T															
E (B	_	∢				ÃO								(E)				
JAD	(GU/	₹				RAÇ	٥	Ϋ́		SPT				ÃÔ	%RQI			
	DE /	<u> 1</u>	Δ			EFU	A¢.	😤				ш		₽¥	%RE			
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO				1ª FASE	2ª FASE	PENETRAÇÃO (cm)			% REC	% RQD
R	Š	S	٣	LITOLOGIA		Ħ	F	뿐	0	30	60	<u>e</u>	2ª	퓝	0	10	0 %	% F
0			<u>.</u> -	Silte de cor amarelada / esbrand		$ \wedge $												
-					-													
_			<u>. </u>															
1-																		
4																		
			Ξ÷									20	60	42	2			
2-] "				
_			· <u>-</u>	Areia fina de cor amarelada com	fragmentos													
_		7		calcareniticos consolidados da g seixo miúdo.	ranulometria do													
3-		<u> </u>										40						
		Grande - M1											60	43	3			
-		a Gr																
4-		alcarenitos e siltitos da Praia	= : =	Areia fina siltosa de cor amarela	da.													
		s da	<u> </u>															
-		iltito	Ξ.			Rotary						14						
5		s e s	= =			Ro							58	4	5			
-		nito	푸:	Silte argiloso de cor amarelada.														
-		Icare	- - -	one arginoss as ser amarciada.														
6—		ا ا	- - -									22						
-		Jico:	-									23	49	45	5			
7		Miocénico:																
7		Σ	==	Silte de cor amarelada.														
-												29						
8—													60	34	4			
-																		
			<u>:-</u> -															
9—			\div															
-												7	60	42	2			
		_	<u> </u>					<u> </u>						``				
Ob	serv	açõ	es:								Leg	enda	:					
_				AI BY	- I- 4 -						1							
Sor	ndad	or:	Paul	Alves Pág. 1 c	ie i En	g. G	eolog	o : A	ndré	Costa								

Inclinação: 90 º

Comprimento: 9 m

BOLETIM DE SONDAGEM

Localização: Pêra, Praia Grande Ref^a. Projecto: 064.21.PRJ

Data de Início: 23/11/2021 Equipamento: Fraste Multidrill SL Data de Fim: 23/11/2021

Tipo de Furação: Rotary Diâmetro de Furação: 86 mm Diâmetro de Revestimento: 98 mm SONDAGEM

Observações:			Legenda:
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa	-

		E	NGEN	HARIA + GEOLOGIA + ENERGIA				В	OLE	TIM D	E S	ONE	AG	ΕM				
		1 (\cap	MEGE	Cliente: Rockbu	ildin	g											
	ч		\mathbf{C}	INEGE	Localização: P				de									
					Refª. Projecto:	064	.21.PF	٦J										
				22/11/2021	Equipamento:	rast	te Mul	tidrill	SL							SONE	AGE	ΕM
Dat	a de	Fim	1: 23	3/11/2021 	Tipo de Furação:	R	otary									S1	2_Pz	Z
Inc	linaç	ão:	90°		Diâmetro de Fur	ação) : 8	6 mm									_	
Cor	mpri	men	ito:	3 m	Diâmetro de Rev	esti	mento): ⁹	98 m	m								
<u>.</u>	4	≰				λÃΟ		。	1					E)	 %RQI	.		
DAC	ÁGU	RA				JRA(ြဋ္ဌ	ĄĊŽ	1	SPT				Ä				
1	H	ATIG	NDA			Ē	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ͳ				щ	یر ا	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	%REC			
PROFUNDIDADE (m)	NÍVEL DE ÁGUA	ESTRATIGRAFIA	LEGENDA			TIPO DE FURAÇÃO	ALTERAÇÃO	FRACTURAÇÃO		••		1ª FASE	2ª FASE	PENETRAÇÃO (cm)		100	% REC	% RQD
	Z	Ш		LITOLOGIA		F	⋖	正	0	30	60	1ª	79	<u> </u>	0	100	%	%
•			:- -	Silte de cor amarelada / esbrand	ıuiçada.													
-																		
1-																		
+			<u>:-</u> -															
-			$\div \equiv$															
1												15						
		M1"											44	4 4	5			
2—		de -	Ξ÷															
		Gran	• •	Areia fina de cor amarelada com														
4		aia (calcareniticos consolidados da g seixo miúdo.	granulometria do													
-		la Pr																
3-		alcarenitos e siltitos da Praia Grande - M1"				\ \						31						
+		silti				Rotary							60	4	1			
-		tos ("												
1		areni	<u></u>															
4_		Calc	I.I.	Areia fina siltosa de cor amarela calcareniticos consolidados da g														
٦) .c	三: 二 士:	seixo miúdo.														
4		Miocénico:	: : <u>:</u>															
-		Mio	王									17	ll .					
+													60	2	9			
5-			: : <u>:</u>															
1			===	Silte de cor amarelada.														
			Ξ÷															
6-			Ė															
4												30	60	 4				
4			<u></u> -			$ \psi $							60	1 4				
Ob	serv	açõ	es:	O piezómetro estava seco	no dia 02/12/2021						Leg	jenda	1:					
											`							
											-							
Sor	ndad	or:	Paulo	o Alves Pág. 1 d	le 1 En	g. G	eólog	o : A	.ndré	Costa								
											1							

Data de Início: 22/11/2021

Data de Fim: 23/11/2021

Inclinação: 90 º

Comprimento: 6 m

BOLETIM DE SONDAGEM

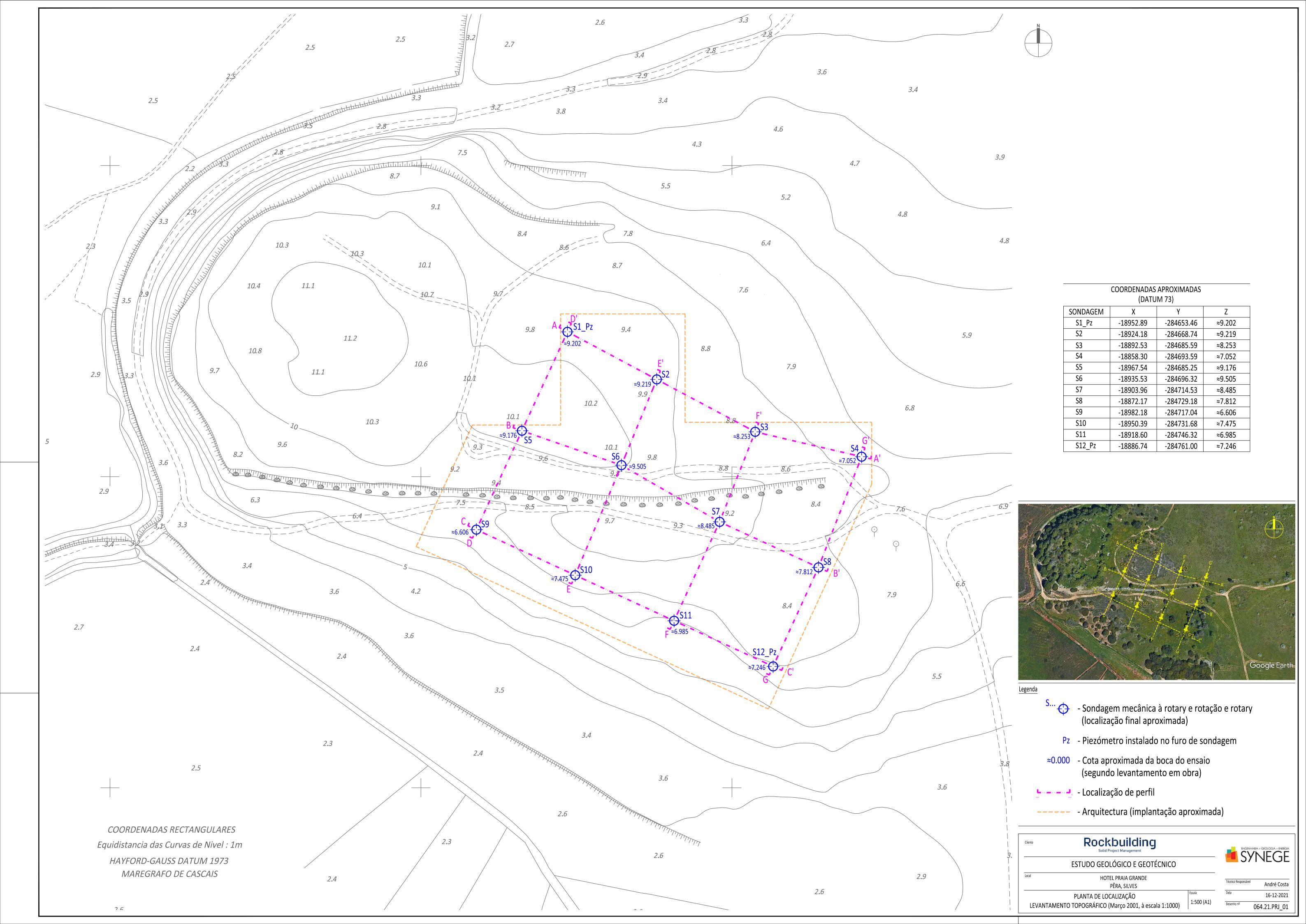
Cliente: Rockbuilding
Localização: Pêra, Praia Grande

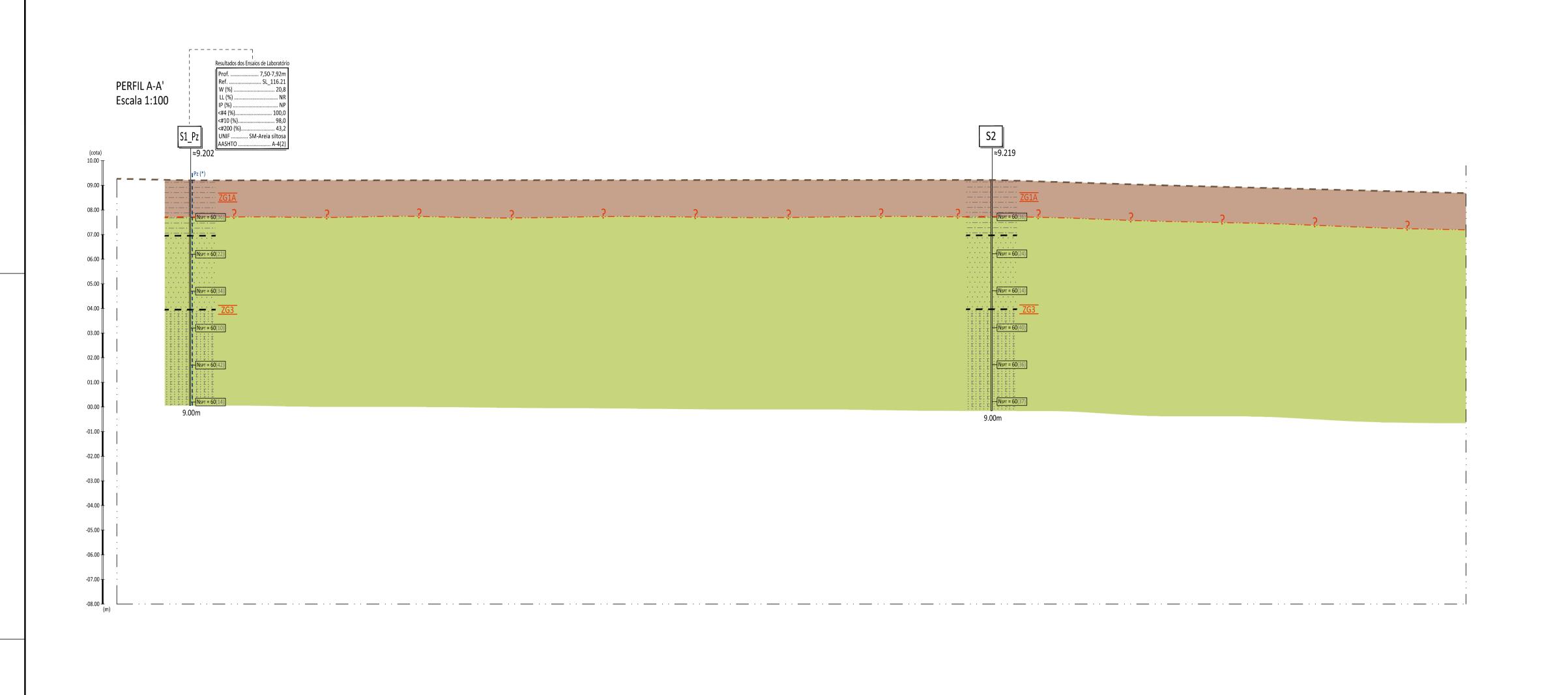
Ref^a. Projecto: 064.21.PRJ

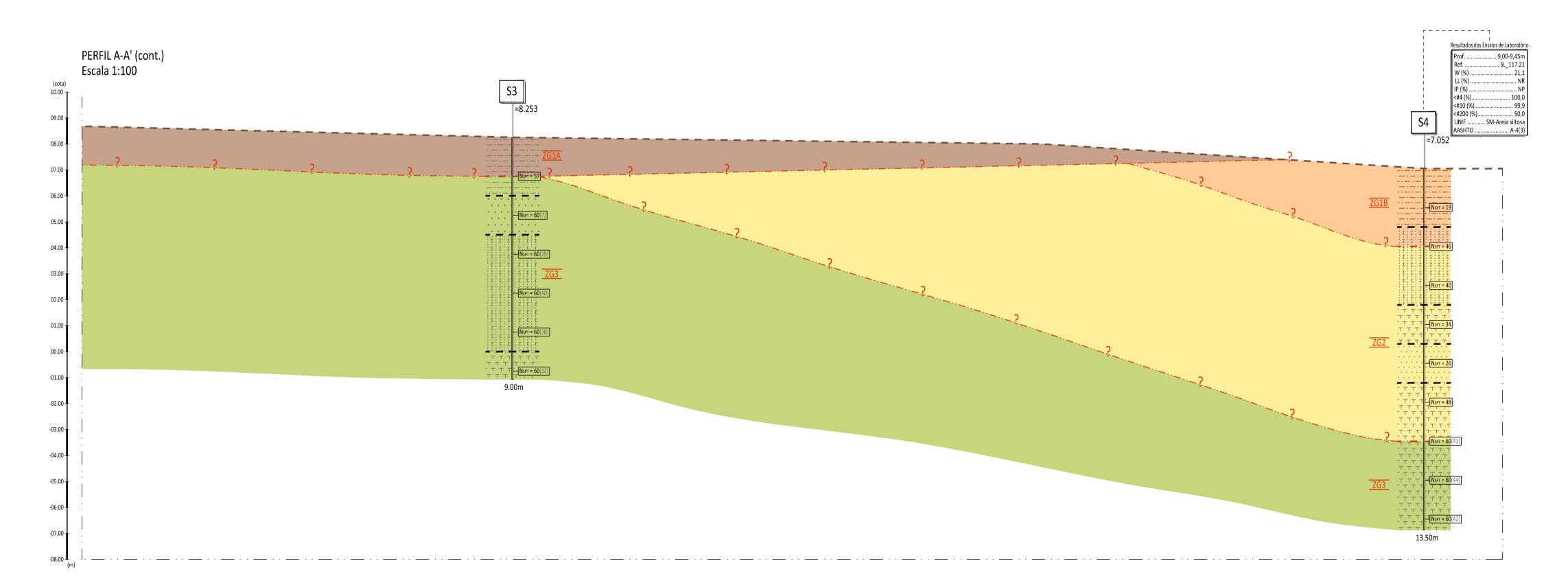
Equipamento: Fraste Multidrill SL

Tipo de Furação: Rotary

Diâmetro de Furação: 86 mm


Diâmetro de Revestimento: 98 mm


SONDAGEM


S12_Pz

Observações:			Legenda:	
Sondador: Paulo Alves	Pág. 1 de 1	Eng. Geólogo: André Costa		

genda	
Miocénico:"Calcarenitos e Siltitos da Praia Grande - M1"	
	Condegen meeânies à veteur e ret
esbranquiçada, por vezes com laivos acinzentados.	S Sondagem mecânica à rotary e rotary (localização aproximada)
- Argila arenosa de cor castanha escura.	- Resultado do ensaio SPT m - Profundidade da sondagem
- Areia fina de cor amarelada, com fragmentos	≈0.000 - Cota aproximada da
calcareníticos consolidados da granulometria do seixo miúdo.	boca do ensaio
- Areia média de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao calhau.	Pz - Piezómetro instalado
- Areia fina siltosa de cor amarelada. Por vezes com restos de conchas ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo	no furo de sondagem
- Silte argiloso de cor amarelada. Por vezes com laivos acinzentados e/ou fragmentos calcareníticos consolidado granulometria do seixo miúdo ao grosseiro ou do seixo mao calhau.	
	– – – - Superfície aproximada do terreno
- Calcarenito ou calcarenito decomposto, de cor amarelada ou esbranquiçada e laivos avermelhados,	- − − - Limite geológico
de granulometria arenosa a argilosa.	— ? — · — - Limite geotécnico
Ensaios de Laboratório	
W - Teor em água	
LL - Limite de Liquidez IP - Índice de Plasticidade	
<#4 (%) - Percentagem de solo que passa no peneiro 4	
<#10 (%) - Percentagem de solo que passa no peneiro 10 <#200 (%) - Percentagem de solo que passa no peneiro 200	NOTA: A espessura aparente envolvente à sondag é esquemática

Zona Geotécnica	N _{SPT}	Peso Volúmico γ (kN/m³)	Angulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4-7	14	23	-	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 – 26 (40)	15	26		6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 – 48	18	28	-	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33		40	650 - 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

Rockbuilding Solid Project Management

ESTUDO GEOLÓGICO E GEOTÉCNICO

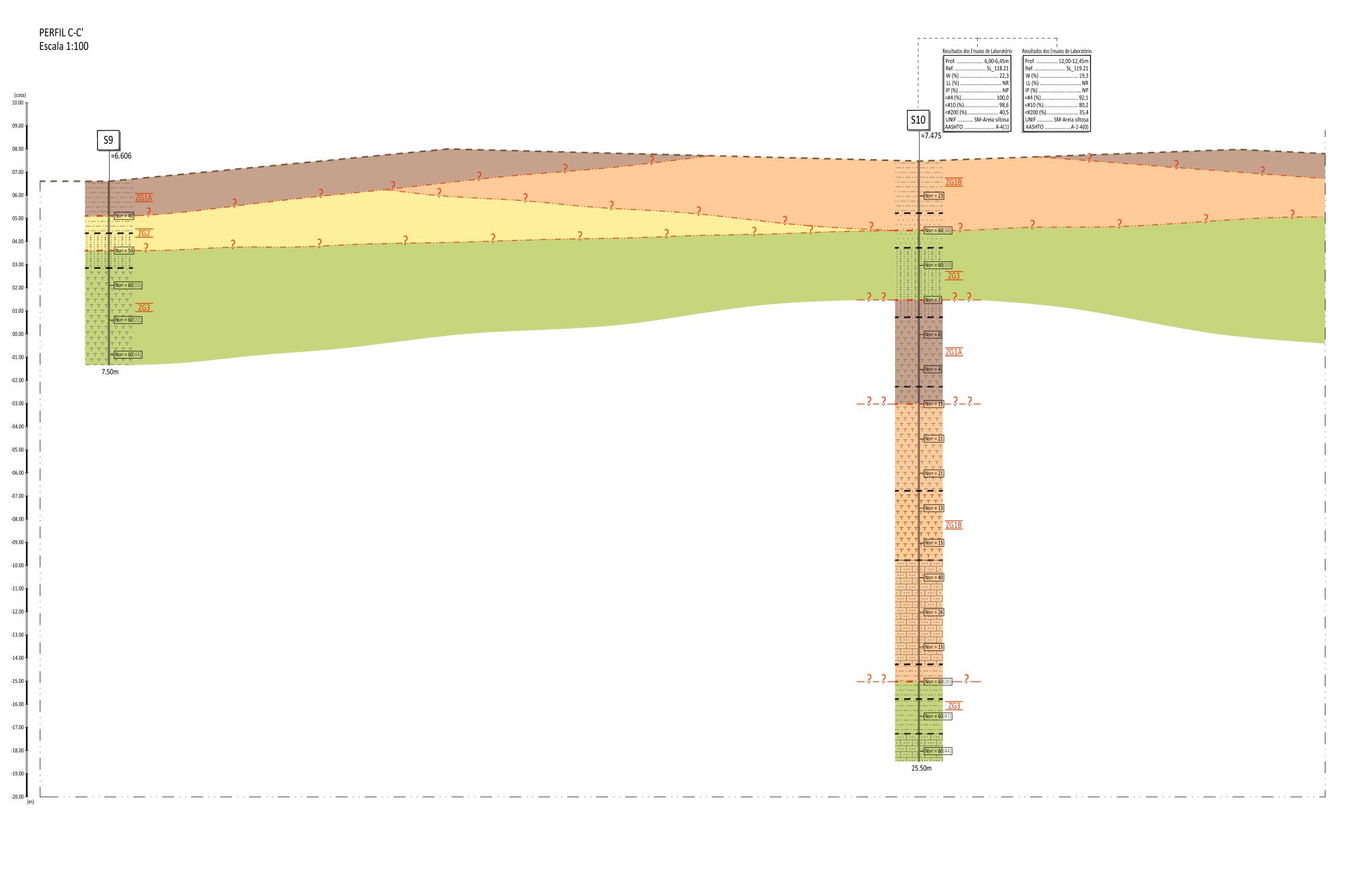
HOTEL PRAIA GRANDE PÊRA, SILVES

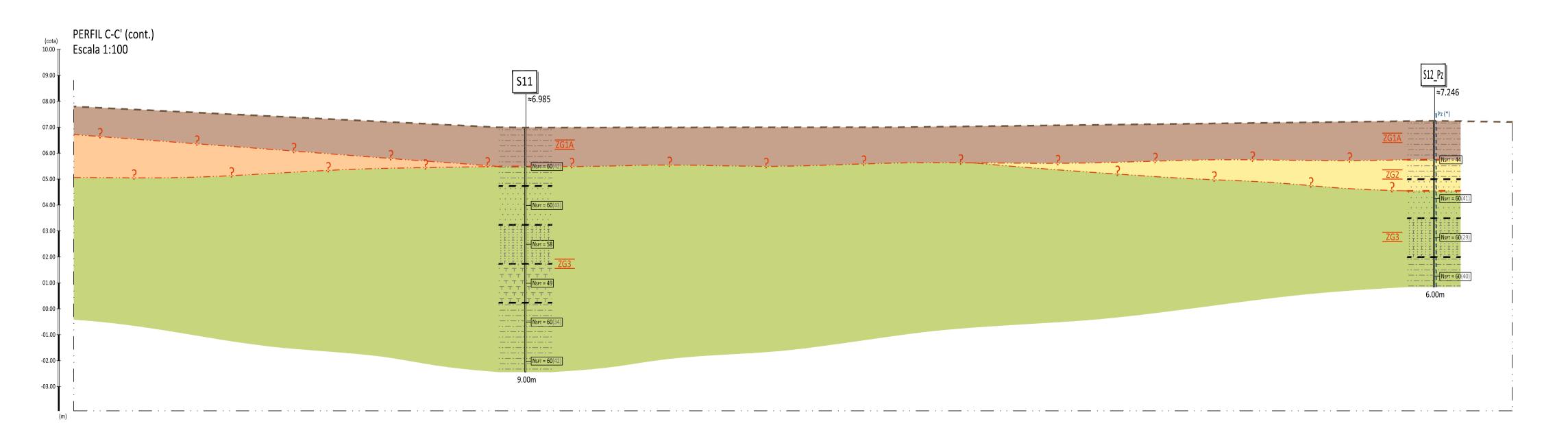
PERFIL GEOLÓGICO-GEOTÉCNICO INTERPRETATIVO A-A'

ENGENHARIA + GEOLOGIA + ENERGIA
SYNEGE André Costa 16-12-2021 1:100 (A1) Desenho nº

064.21.PRJ_02

PERFIL B-B' Escala 1:100 PERFIL B-B' (cont.) Escala 1:100


	Howard for the control of the contro
egenda_	
Miocénico: "Calcarenitos e Siltitos da Praia Grande - M1"	
- Silte de cor acinzentada ou amarelada ou esbranquiçada, por vezes com laivos acinzentados.	S Sondagem mecânica à rotary e rotação rotary (localização aproximada)
- Argila arenosa de cor castanha escura.	- Resultado do ensaio SPT - Profundidade da sondagem
- Areia fina de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo.	≈0.000 - Cota aproximada da boca do ensaio
- Areia média de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao calhau.	Pz - Piezómetro instalado no furo de sondagem
- Areia fina siltosa de cor amarelada. Por vezes com restos de conchas ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo - Silte argiloso de cor amarelada. Por vezes com laivos	(*) - Em 02-12-2021 o piezómetro
acinzentados e/ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao grosseiro ou do seixo miúdo ao calhau.	encontrava-se seco
- Argila siltosa de cor castanha.	-
- Calcarenito ou calcarenito decomposto, de cor amarelada ou esbranquiçada e laivos avermelhados,	- − − - Limite geológico
de granulometria arenosa a argilosa.	— ? — · — - Limite geotécnico
Ensaios de Laboratório	
W - Teor em água	
LL - Limite de Liquidez IP - Índice de Plasticidade	
<#4 (%) - Percentagem de solo que passa no peneiro 4	
<#10 (%) - Percentagem de solo que passa no peneiro 10 <#200 (%) - Percentagem de solo que passa no peneiro 200	NOTA: A espessura aparente envolvente à sondagem é esquemática


Zona Geotécnica	N _{SPT}	Peso Volúmico γ (kN/m³)	Angulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4-7	14	23	-	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 – 26 (40)	15	26		6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 - 4 8	18	28	-	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33		40	650 - 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

ENGENHARIA + GEOLOGIA + ENERGIA
SYNEGE

André Costa

Cliente	Rockbuilding Solid Project Management	
	ESTUDO GEOLÓGICO E GEOTÉCNICO	
Local	HOTEL PRAIA GRANDE PÊRA, SILVES	
	PERFIL GEOLÓGICO-GEOTÉCNICO INTERPRETATIVO B-B'	1:100 (A1)

océnico:"Calcarenitos e Siltitos da Praia Grande - M1"	
- Silte de cor acinzentada ou amarelada ou esbranquiçada, por vezes com laivos acinzentados.	S Sondagem mecânica à rotary e rotação e rotary (localização aproximada)
- Argila arenosa de cor castanha escura.	- Resultado do ensaio SPT - Profundidade da sondagem
- Areia fina de cor amarelada, com fragmentos	≈0.000 - Cota aproximada da

calcareníticos consolidados da granulometria do seixo - Areia média de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao calhau.

- Areia fina siltosa de cor amarelada. Por vezes com restos de conchas ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo - Silte argiloso de cor amarelada. Por vezes com laivos

- Argila siltosa de cor castanha.

acinzentados e/ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao grosseiro ou do seixo miúdo ao calhau. - - - - - Superfície aproximada do terreno

- Calcarenito ou calcarenito decomposto, de cor amarelada ou esbranquiçada e laivos avermelhados, de granulometria arenosa a argilosa.

<#200 (%) - Percentagem de solo que passa no peneiro 200

— ? — · — - Limite geotécnico

Ensaios de Laboratório

W - Teor em água LL - Limite de Liquidez

IP - Índice de Plasticidade <#4 (%) - Percentagem de solo que passa no peneiro 4 <#10 (%) - Percentagem de solo que passa no peneiro 10

NOTA: A espessura aparente envolvente à sondagem é esquemática

– – – - Limite geológico

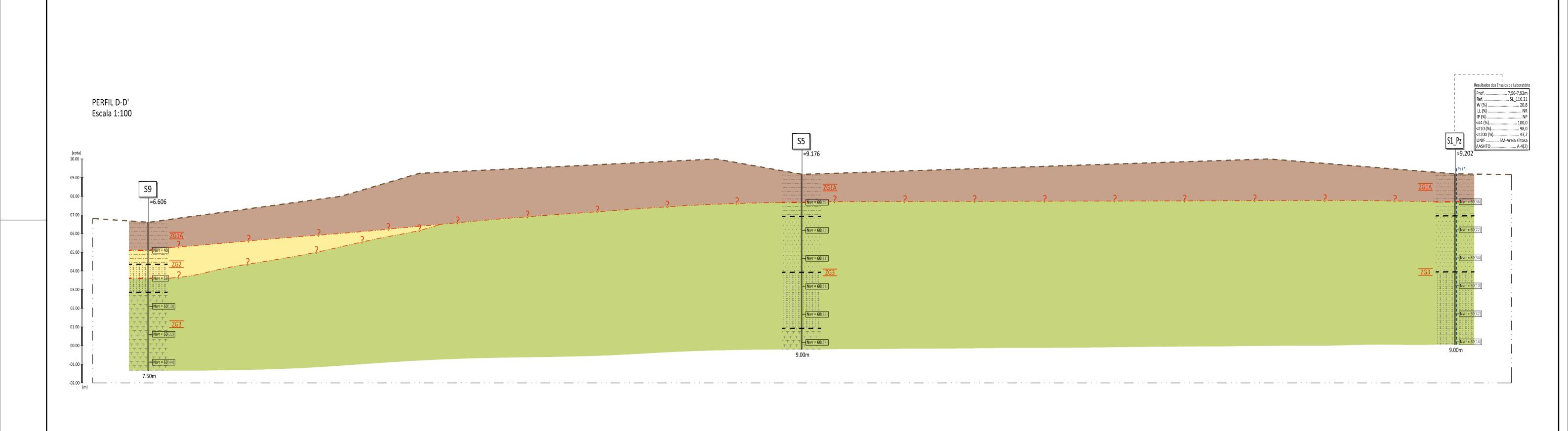
boca do ensaio

Pz - Piezómetro instalado

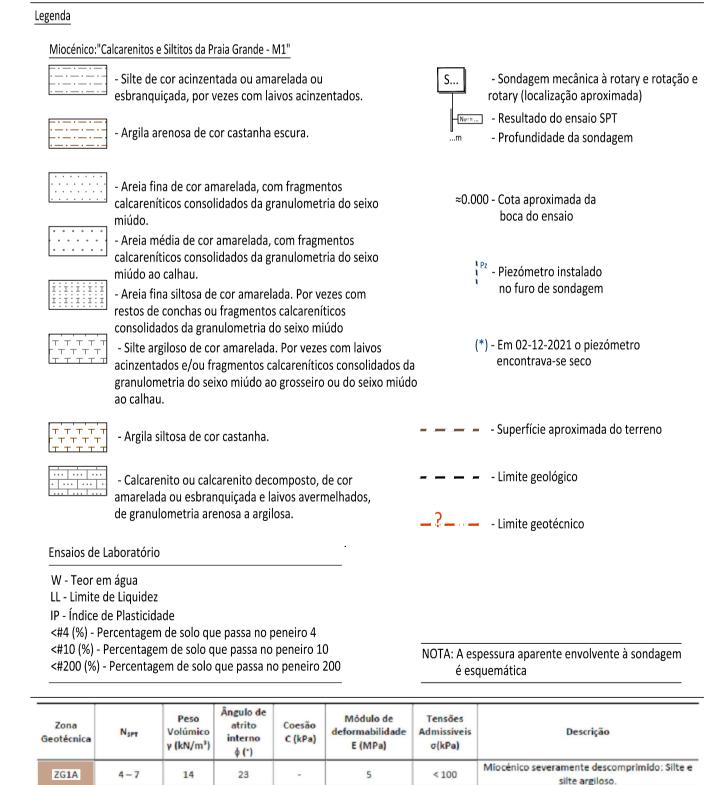
no furo de sondagem

(*) - Em 02-12-2021 o piezómetro

encontrava-se seco


Zona Geotécnica	N _{SPT}	Peso Volúmico γ (kN/m³)	Angulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4-7	14	23	-	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 – 26 (40)	15	26		6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 - 4 8	18	28	-	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33	-	40	650 - 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

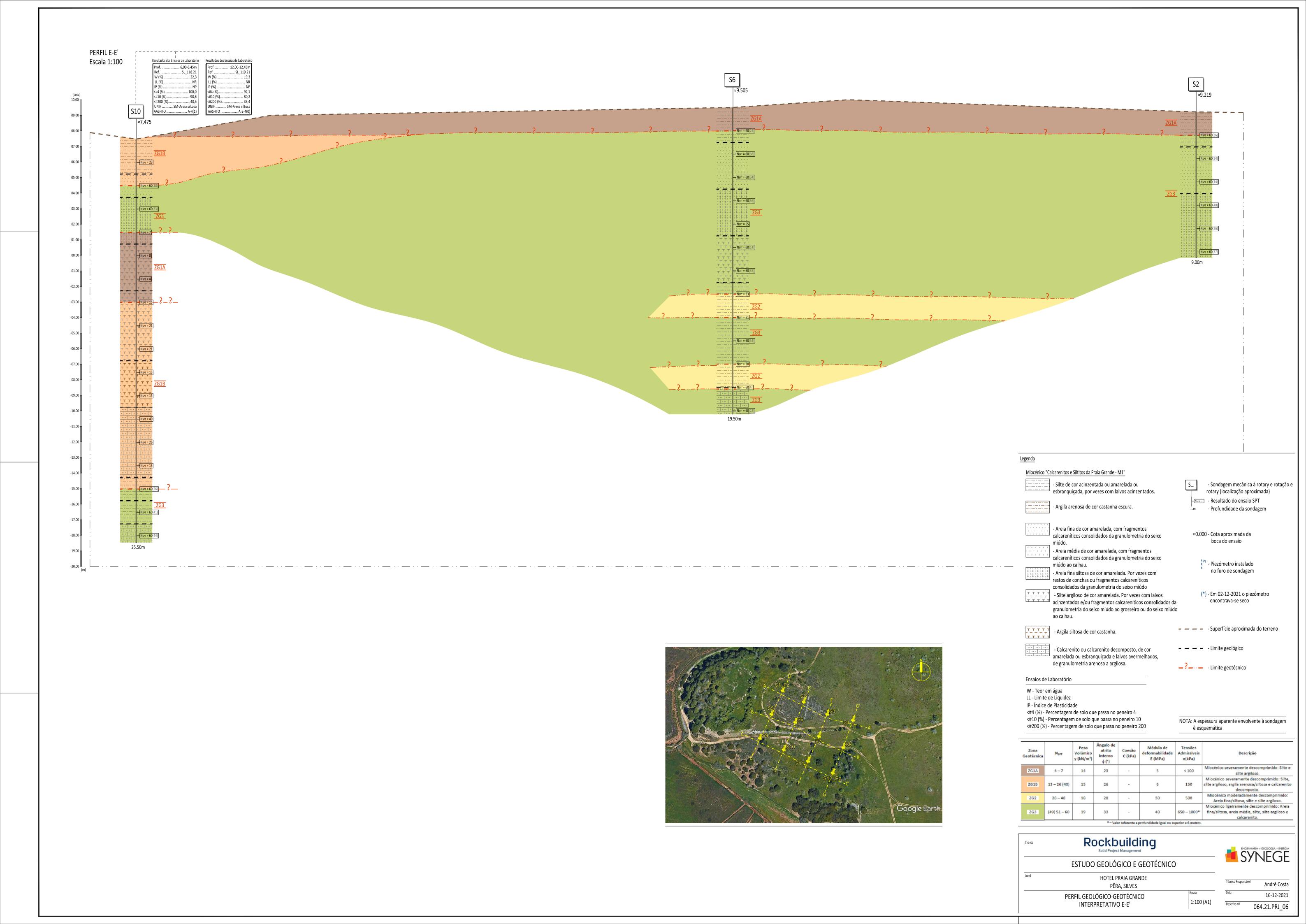
Rockbuilding Solid Project Management


ESTUDO GEOLÓGICO E GEOTÉCNICO HOTEL PRAIA GRANDE PÊRA, SILVES PERFIL GEOLÓGICO-GEOTÉCNICO

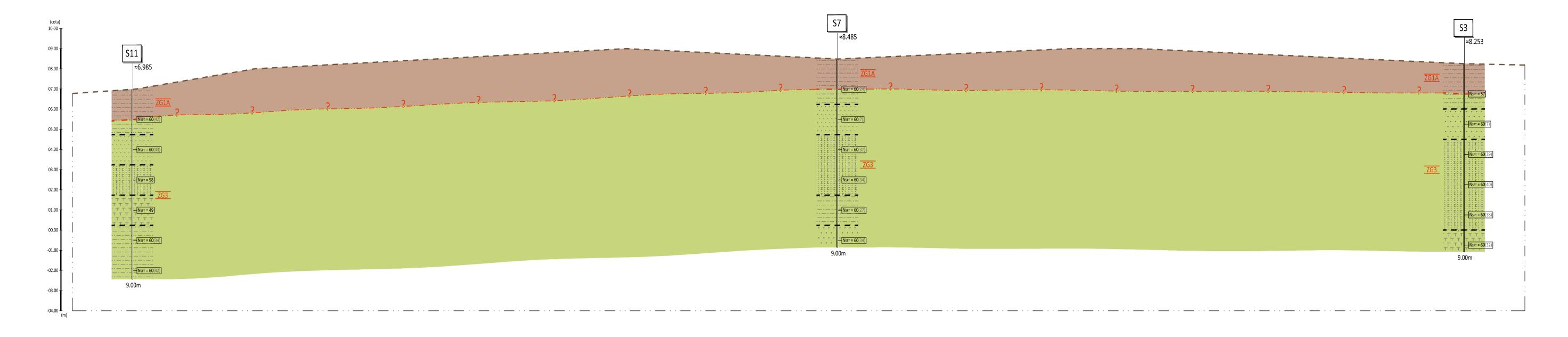
INTERPRETATIVO C-C'

ENGENHARIA + GEOLOGIA + ENERGIA
SYNEGE André Costa 16-12-2021 1:100 (A1) 064.21.PRJ_04

Zona Geotécnica	N _{SPT}	Peso Volúmico γ (kN/m³)	Angulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4-7	14	23	-	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 - 26 (40)	15	26		6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 – 48	18	28	-	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33	-	40	650 - 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.


Cliente	Rockbuilding
	Callid Desirat Management

ESTUDO GEOLÓGICO E GEOTÉCNICO


Local HOTEL PRAIA GRANDE
PÊRA, SILVES

PERFIL GEOLÓGICO-GEOTÉCNICO INTERPRETATIVO D-D'


SYNEGE SYNEGE

PERFIL F-F' Escala 1:100

Rockbuilding
Solid Project Management

ESTUDO GEOLÓGICO E GEOTÉCNICO

HOTEL PRAIA GRANDE

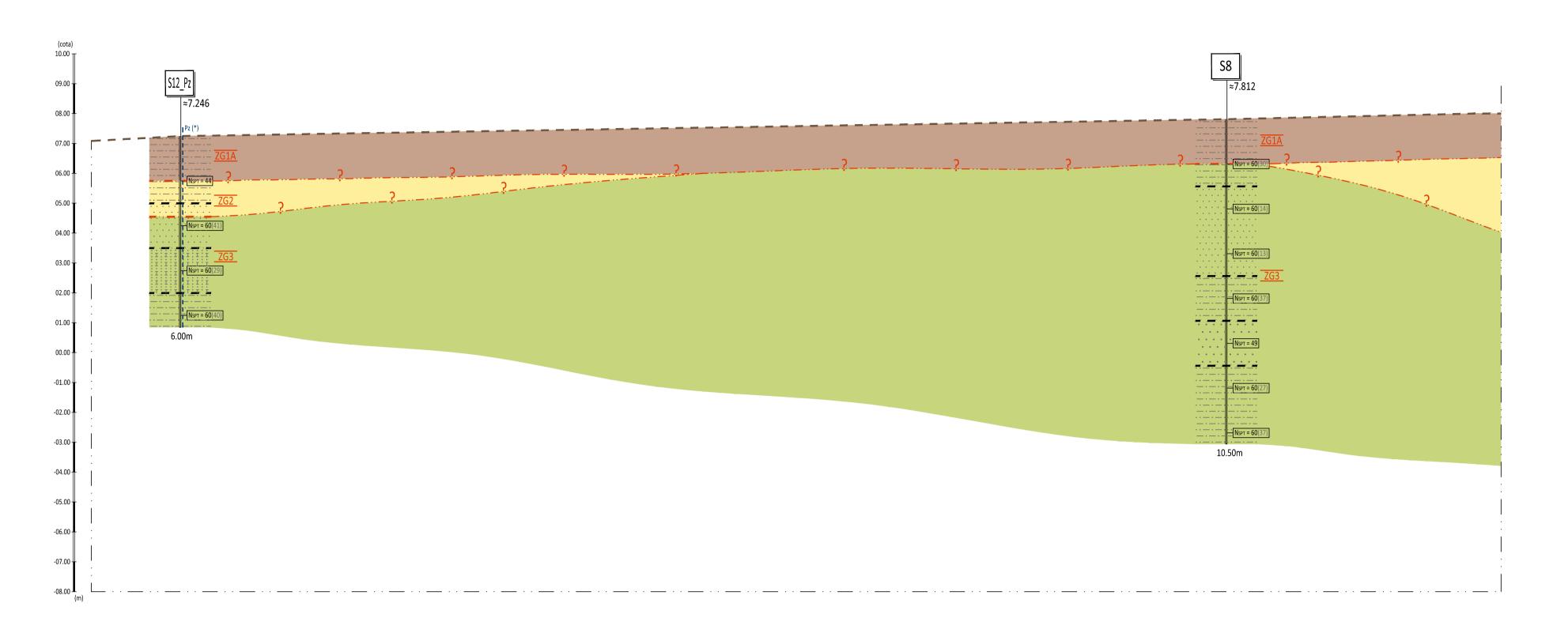
PÊRA, SILVES

PERFIL GEOLÓGICO-GEOTÉCNICO INTERPRETATIVO F-F'

ZG3 (49) 51 – 60

Miocénico ligeiramente descomprimido: Areia

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE


André Costa

16-12-2021

064.21.PRJ_07

650 – 1000* fina/siltosa, areia média, silte, silte argiloso e

PERFIL G-G' Escala 1:100

enda Miocénico:"C	alcarenitos e Siltitos da Praia Grande - M1"	
	- Silte de cor acinzentada ou amarelada ou esbranquiçada, por vezes com laivos acinzentados.	- Sondagem mecânica à rotary e rotary (localização aproximada)
	- Argila arenosa de cor castanha escura.	- Resultado do ensaio SPT m - Profundidade da sondagem
	- Areia fina de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo.	≈0.000 - Cota aproximada da boca do ensaio
·····	- Areia média de cor amarelada, com fragmentos calcareníticos consolidados da granulometria do seixo miúdo ao calhau.	- Piezómetro instalado no furo de sondagem
	 - Areia fina siltosa de cor amarelada. Por vezes com restos de conchas ou fragmentos calcareníticos consolidados da granulometria do seixo miúdo - Silte argiloso de cor amarelada. Por vezes com laivos 	(*) - Em 02-12-2021 o piezómetro
T T T T T	acinzentados e/ou fragmentos calcareníticos consolidados o granulometria do seixo miúdo ao grosseiro ou do seixo miúdo ao calhau.	da encontrava-se seco
, , , , , , , , , , , , , , , , , , ,	- Argila siltosa de cor castanha.	Superfície aproximada do terreno
	- Calcarenito ou calcarenito decomposto, de cor amarelada ou esbranquiçada e laivos avermelhados,	– – – - Limite geológico
	de granulometria arenosa a argilosa.	— ? — · — - Limite geotécnico
Ensaios de L	aboratório	
W - Teor em LL - Limite d		
	e Plasticidade	
<#10 (%) - P	ercentagem de solo que passa no peneiro 4 Percentagem de solo que passa no peneiro 10 Percentagem de solo que passa no peneiro 200	NOTA: A espessura aparente envolvente à sondag é esquemática

Zona Geotécnica	N _{SPT}	Peso Volúmico γ (kN/m³)	Ângulo de atrito interno φ (°)	Coesão C (kPa)	Módulo de deformabilidade E (MPa)	Tensões Admissíveis σ(kPa)	Descrição
ZG1A	4-7	14	23	-	5	< 100	Miocénico severamente descomprimido: Silte e silte argiloso.
ZG1B	13 – 26 (40)	15	26		6	150	Miocénico severamente descomprimido: Silte, silte argiloso, argila arenosa/siltosa e calcarenito decomposto.
ZG2	26 - 4 8	18	28	-	30	500	Miocénico moderadamente descomprimido: Areia fina/siltosa, silte e silte argiloso.
ZG3	(49) 51 – 60	19	33		40	650 - 1000*	Miocénico ligeiramente descomprimido: Areia fina/siltosa, areia média, silte, silte argiloso e calcarenito.

ENGENHARIA + GEOLOGIA + ENERGIA
SYNEGE

André Costa

Cliente	Rockbuilding Solid Project Management	
	ESTUDO GEOLÓGICO E GEOTÉCNICO	
Local	HOTEL PRAIA GRANDE PÊRA, SILVES	
	PERFIL GEOLÓGICO-GEOTÉCNICO INTERPRETATIVO G-G'	Escala 1:100 (A1)

ENSAIOS REALIZADOS - SOLOS ENSAIOS REALIZADOS - SOLOS Cliente: Amostra Nº 116 / 2021 Obra: Colheita: Colheita: S1 Pz (7,50m - 7,92m)

	Х	- ТЕ	OR EM ÁGUA NATURAL						
	Х	- AN	IÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)					
	Х	- LII	ΛITES DE CONSISTÊNCIA						
		- EC	UIVALENTE DE AREIA						
		- AZ	UL DE METILENO EM SOLOS						
		- DE	TERMINAÇÃO DA MATÉRIA ORGÂN	ICA					
		- EN	SAIO DE COMPACTAÇÃO						
		- EN	SAIO DE COMPACTAÇÃO COM COR	RECÇÃO					
		- DE	DETERMINAÇÃO DO CBR						
		- M	MASSAVOLUMICA E ABSORÇÃO EM ÁGUA						
		- co	COEFICIENTE DE FRAGMENTABILIDADE						
		- co	COEFICIENTE DE DEGRADABILIDADE						
Observações:									
Operador colheita:			Visto:	Data colheita:	Pág.				
	Carlos Ribeiro	0	`∀	13/12/2021	1/2				

ENGENHARIA .	YEGE VEGE		QUADRO RESUMO - SOLOS	Cliente:
Amostra №	116 / 2021	Obra:	064.21PRJ	Rockbuilding
Laboratório Refª	Central	Colheita:	S1 Pz (7,50m - 7,92m)	

Laboratório Refª Centr	Colheit	ta:	S1 Pz (7,50m - 7,92m)
Utiliza	ação		
Classificação	Unificada		SM Areia siltosa
Classificação para	fins Rodoviário	os .	A-4 (2)
Análise Granulométrica	(% Total	1" 100,0 3/4" 100,0 # 4 100,0 # 10 98,0	100 90 80 70
	l ' ⊢	# 200 43,2	80 40 80 80 80 80 80 80 80 80 80 80 80 80 80
Teor em Água (%		20,8	20
Teor em Matéria Orgân	ica (%)		10 0,01 0,10 1,00 10,00 100,00 Dimensão das particulas (mm)
Equivalente de Areia	(%)		50 June 1300 das particulas (11111)
Azul de Metileno			
Limite de Liquidez (NR	(w) 40 CH CH OH OH
Limite de Plasticidade Índice de Plasticidade		NR NP	e 20 CL MH OH
Limite de Retracção			ndice on dice of the control of the
Massa Volúmica das Particulas Secas	> 3/4" > #4 e < 3/4" > #4		0 10 20 30 40 50 60 70 80 90 100 Limite de Liquidez (%)
(g/cm³)	< #4		2,02
Ensaio de Compactação 	γd _{máx} (g/cm ³) W _{opt} (%)		1,98 E 1,96 D 1,94
CBR im	CBR (%)		0 1,92 v 1,90 v
95% de Compactação Relativa	Expans. (%)		© 1.88
Coeficiente Fragmentab	ilidade		1,84
Coeficiente Degradabil	idade		6,0 8,0 10,0 12,0 14,0 16,0 18,0 Teor em água (%)
Observações:			

Observações:			
Operador colheita:	Visto:	Data colheita:	Pág.
Carlos Ribeiro	/3)	13/12/2021	2/2

Provete		1	2
Massa do recipiente	(g)	361,73	
Massa do recipiente + provete húmido	(g)	1058,24	
Massa do recipiente + provete seco	(g)	938,54	
Massa da água	(g)	119,70	
Massa do provete seco	(g)	576,81	
Teor em água	(%)	20,75	

(%)

20,8

TEOR EM ÁGUA MÉDIO

				1
Observações:				ı
				ı
				ı
				l
	I i			ı
Operador:	Visto:	Data:	Pág.	ı
Carlos Pibeiro	/ <u>/</u> //	13/12/2021	1 / 1	ı

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE

ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)

LNEC E 239

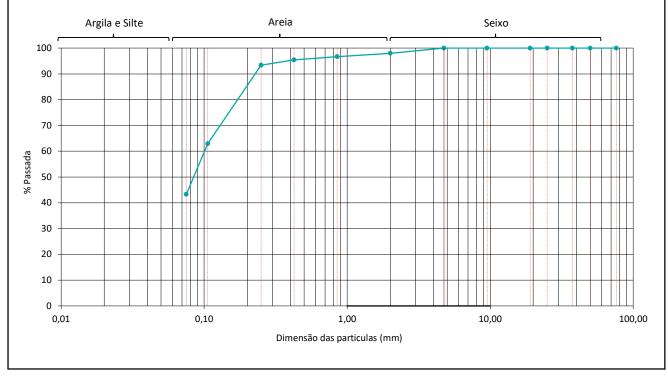
Cliente:

Amostra №

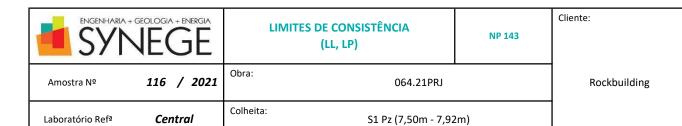
116 / 2021

Obra: 064.21PRJ

Rockbuilding


Laboratório Refa **Central**

Colheita:


S1 Pz (7,50m - 7,92m)

Massa total do provete	(g)	122.2	Massa total da fracção fina seca antes de lavada	(g)	
iviassa total do provete	(8)		Massa total da fracção fina seca depois de lavada	(g)	66,9

Peneiros (U.S.A.)	eiros (U.S.A.) Peneiros (mm)		% Retida	% Ac. retida	% Ac. passada
3"	76,1	0,0	0,0	0,0	100,0
2"	50,0	0,0	0,0	0,0	100,0
1 1/2"	37,5	0,0	0,0	0,0	100,0
1"	25,0	0,0	0,0	0,0	100,0
3/4"	3/4" 19,0		0,0	0,0	100,0
3/8"	3/8" 9,50		0,0	0,0	100,0
# 4	4,75	0,0	0,0	0,0	100,0
# 10	2,00	2,5	2,0	2,0	98,0
Total Frac	ção Grossa	2,5	2,0		
# 20	0,850	1,61	1,3	3,4	96,6
# 40	0,425	1,51	1,2	4,6	95,4
# 60	0,250	2,47	2,0	6,6	93,4
#140	0,106	37,20	30,5	37,1	62,9
# 200	0,075	24,06	19,7	56,8	43,2
Fui	ndo	52,82	43,2	100,0	0,0
Total Fracção Fina		119,67	98,0		

Observações:					
		CU =	6,3	CC =	
Operador:	Visto:	Data:			Pág.
Carlos Ribeiro	(*)		14/	12/2021	1/1

	Provete		1	2	3	4
2	Massa do recipiente	(g)				
LIQUIDEZ	Massa do recipiente + provete húmido	(g)				
	Massa do recipiente + provete seco	(g)				
E DE	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
_	Teor em água	(%)				
	N.º de pancadas					

	Provete		1	2	3	4
\DE	Massa do recipiente	(g)				
CID/	Massa do recipiente + provete húmido	(g)				
PLASTICIDADE	Massa do recipiente + provete seco	(g)				
DE PI	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
M	Teor em água	(%)				
	Valor Médio	(%)				

RESULTADOS OBTIDOS						
LIMITE DE LIQUIDEZ (%	NR	LIMITE DE PLASTICIDADE (%)	NR	ÍNDICE DE PLASTICIDADE (%)	NP	

Observações:			
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	/\ <u>\</u>	15/12/2021	1/1

ENSAIOS REALIZADOS - SOLOS ENSAIOS REALIZADOS - SOLOS Cliente: Amostra № 117 / 2021 Obra: 064.21PRJ Rockbuilding Laboratório Ref² Central Colheita: S4 (9,00m - 9,45m)

	Х	- TE	OR EM ÁGUA NATURAL				
	Х	- Al	IÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)			
	Х	- ц	MITES DE CONSISTÊNCIA				
		- E0	QUIVALENTE DE AREIA				
		- A	UL DE METILENO EM SOLOS				
		- D	TERMINAÇÃO DA MATÉRIA ORGÂN	ICA			
		- EI	ISAIO DE COMPACTAÇÃO				
		- EI	ISAIO DE COMPACTAÇÃO COM COR	RECÇÃO			
		- D	TERMINAÇÃO DO CBR				
		- M	MASSAVOLUMICA E ABSORÇÃO EM ÁGUA				
		- C0	DEFICIENTE DE FRAGMENTABILIDAD	E			
		- C(DEFICIENTE DE DEGRADABILIDADE				
Observações:							
Operador colheita:			Visto:	Data colheita:	Pág.		
	Carlos Ribeiro	0	M	13/12/2021	1/2		

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE			QUADRO RESUMO - SOLOS	Cliente:	
Amostra Nº	117 / 2021	Obra:	064.21PRJ	Rockbuilding	
Laboratório Refª	Central	Colheita:	S4 (9,00m - 9,45m)		

Classificação Unificada Classificação para fins Rodoviários A-4 (3) Análise Granulométrica Peneiração 3/4" 100,0 Passada) # 10 99,9 # 200 50,0 Teor em Água (%) Z1,1 Teor em Matéria Orgânica (%) Azul de Metileno Azul de Metileno Azul de Metileno Limite de Plasticidade (%) Infindice de Plasticidade (%) Infindice de Plasticidade (%) Infindice de Plasticidade (%) Secas (g/cm²) Asul de Metileno Azul de Metileno A	Laboratório Refª Centro	al Colf	heita:	S4 (9,00m - 9,45m)
Classificação Unificada				
Classificação Unificada Areia siltosa	Utiliza	ıção		
Análise Granulométrica Peneiração 3/4" 100,0 Passada) # 10 99,9 # 200 50,0 Teor em Água (%) Z1,1 Teor em Matéria Orgânica (%) Equivalente de Areia (%) Azul de Metileno	Classificação	Unificada		
Análise Granulométrica	Classificação para	fins Rodoviár	rios	A-4 (3)
Análise Granulométrica Peneiração 3/4" 100,0 # 4 100,0 # 10 99,9 # 200 50,0 # 10 99,9 # 200 50,0 # 10 99,9 # 200 50,0 # 10 99,9 # 200 50,0 # 10 99,9 # 200 50,0 # 10 99,9 # 200 50,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,0 # 20,				100
Teor em Água (%) Teor em Matéria Orgânica (%) Equivalente de Areia (%) Azul de Metileno Limite de Liquidez (%) NR Limite de Plasticidade (%) Massa Volúmica As Particulas Secas H4 (g/cm²) CBR im 95% de Compactação Relativa Expans. (%) Coeficiente Fragmentabilidade Teor em Matéria Orgânica (%) Dimensão das particulas (mm) CH CH MH OH Limite de Liquidez (%) NP Limite de Retracção (%) Massa Volúmica > 3/4" Secas > #4 (g/cm²) CBR im 95% de Compactação Expans. (%) Coeficiente Fragmentabilidade Coeficiente Fragmentabilidade Coeficiente Fragmentabilidade Teor em Matéria Orgânica (%) Dimensão das particulas (mm) CH MH OH OL Java Java Java Java Java Java Java Jav	Análise Granulométrica	(% Total	3/4" 100,0 # 4 100,0 # 10 99,9	80 70 Pass 50 80 80 80 80 80 80 80 80 80 80 80 80 80
Teor em Matéria Orgânica (%)	Teor em Água (%)		21,1	
Equivalente de Areia (%) Azul de Metileno Limite de Liquidez (%) NR Limite de Plasticidade (%) NP Limite de Retracção (%) Massa Volúmica > 3/4" das Particulas > #4 e < 3/4" Secas > #4 (g/cm³) < #4 Ensaio de Compactação Vd_máx (g/cm³) W_ogt (%) CBR im CBR (%) 95% de Compactação Relativa Expans. (%) Coeficiente Fragmentabilidade Coeficiente Fragmentabilidade	Teor em Matéria Orgân	ica (%)		0 0,01 0,10 1,00 10,00 100,00
Limite de Liquidez (%) NR	Equivalente de Areia	(%)		
Massa Volúmica	Azul de Metileno			
Massa Volúmica			+	sticidad of control of
Massa Volúmica			_	
Massa Volúmica				
Ensaio de Compactação	das Particulas	>#4 e < 3/4''		0 10 20 30 40 50 60 70 80 90 100
CBR im CBR (%) Expans. (%) Expans. (%) Expans. (%)	(g/cm³)	< #4		
Coeficiente Fragmentabilidade 1,84 1,82 1,82 1,00 1,00 12,0 14,0 16,0 18,0	1			1,98
Coeficiente Fragmentabilidade 1,84 1,82 1,82 1,00 1,00 12,0 14,0 16,0 18,0	CBR im	CBR (%)		U 1,92
Coeficiente Fragmentabilidade 1,84 1,82 1,82 1,00 1,00 12,0 14,0 16,0 18,0	95% de Compactação Relativa			© 1.88
				1,84
Observações:	Observações:			

Observações:			
Operador colheita:	Visto:	Data colheita:	Pág.
Carlos Ribeiro	79	13/12/2021	2/2

Provete		1	2
Massa do recipiente	(g)	317,52	
Massa do recipiente + provete húmido	(g)	1050,90	
Massa do recipiente + provete seco	(g)	923,28	
Massa da água	(g)	127,62	
Massa do provete seco	(g)	605,76	
Teor em água	(%)	21,07	

(%)

21,1

TEOR EM ÁGUA MÉDIO

Observações:			
•			
Operador:	Visto:	Data:	Pág.
operador.	Visio.		l ug.
Carlos Ribeiro	/ r)	13/12/2021	1 / 1

SYNEGE SYNEGE

ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)

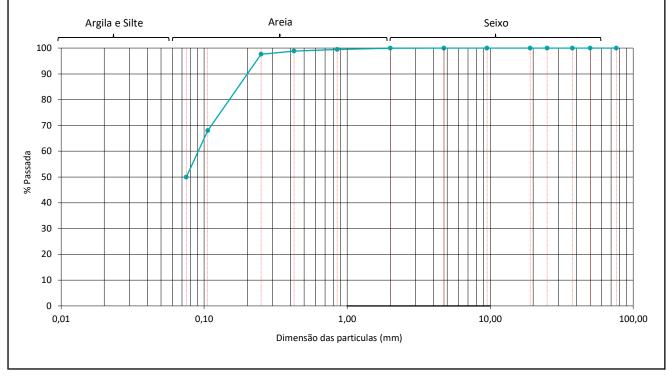
LNEC E 239

Cliente:

Amostra Nº 11

117 / 2021 Obra:

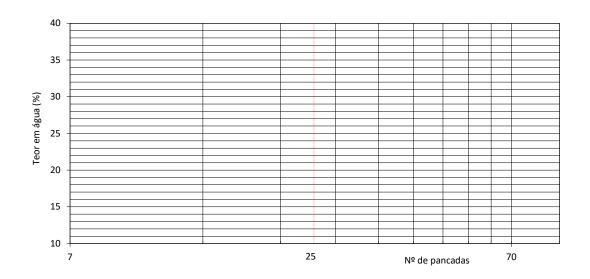
. 064.21PRJ Rockbuilding


Laboratório Refa **Central**

Colheita:

S4 (9,00m - 9,45m)

Massa total do provete	(g)	132.7	Massa total da fracção fina seca antes de lavada	3)	
iviassa total do provete	(8)		Massa total da fracção fina seca depois de lavada (g	3)	66,3


Peneiros (U.S.A.)	Peneiros (mm)	Massa retida (g)	% Retida	% Ac. retida	% Ac. passada
3"	76,1	0,0	0,0	0,0	100,0
2"	50,0	0,0	0,0	0,0	100,0
1 1/2"	37,5	0,0	0,0	0,0	100,0
1"	25,0	0,0	0,0	0,0	100,0
3/4"	19,0	0,0	0,0	0,0	100,0
3/8"	9,50	0,0	0,0	0,0	100,0
# 4	4,75	0,0	0,0	0,0	100,0
# 10	2,00	0,1	0,1	0,1	99,9
Total Frac	ção Grossa	0,1	0,1		
# 20	0,850	0,61	0,5	0,6	99,4
# 40	0,425	0,81	0,6	1,2	98,8
# 60	0,250	1,61	1,2	2,4	97,6
#140	0,106	39,30	29,6	32,0	68,0
# 200	0,075	23,97	18,1	50,0	50,0
Fui	ndo	66,29	50,0	100,0	0,0
Total Fra	Total Fracção Fina		99,9		

Observações:					
		CU =	6,1	CC =	
Operador:	Visto:	Data:			Pág.
Carlos Ribeiro	(*)		14/	12/2021	1/1

Amostra Nº 117 / 2021 Colheita: S4 (9,00m - 9,45m) LIMITES DE CONSISTÊNCIA (LL, LP) Cliente: Rockbuilding

	Provete		1	2	3	4
2	Massa do recipiente	(g)				
LIQUIDEZ	Massa do recipiente + provete húmido	(g)				
	Massa do recipiente + provete seco	(g)				
E DE	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
	Teor em água	(%)	-			
	N.º de pancadas	·				

	Provete		1	2	3	4
\DE	Massa do recipiente	(g)				
CID/	Massa do recipiente + provete húmido	(g)				
PLASTICIDADE	Massa do recipiente + provete seco	(g)				
DE PI	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
M	Teor em água	(%)				
	Valor Médio (%)					

RESULTADOS OBTIDOS						
LIMITE DE LIQUIDEZ	(%)	NR	LIMITE DE PLASTICIDADE (%)	NR	ÍNDICE DE PLASTICIDADE (%)	NP

Observações:			
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	M	15/12/2021	1/1

ENSAIOS REALIZADOS - SOLOS ENSAIOS REALIZADOS - SOLOS Cliente: Amostra Nº 118 / 2021 Obra: Colheita: Colheita: S10 (6,00m - 6,45m)

LIMITES DE CONSISTÊNCIA - EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS - DETERMINAÇÃO DA MATÉRIA ORGÂNICA - ENSAIO DE COMPACTAÇÃO - ENSAIO DE COMPACTAÇÃO COM CORRECÇÃO - DETERMINAÇÃO DO CBR - MASSAVOLUMICA E ABSORÇÃO EM ÁGUA - COEFICIENTE DE FRAGMENTABILIDADE	
- EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS - DETERMINAÇÃO DA MATÉRIA ORGÂNICA - ENSAIO DE COMPACTAÇÃO - ENSAIO DE COMPACTAÇÃO COM CORRECÇÃO - DETERMINAÇÃO DO CBR - MASSAVOLUMICA E ABSORÇÃO EM ÁGUA	
- EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS - DETERMINAÇÃO DA MATÉRIA ORGÂNICA - ENSAIO DE COMPACTAÇÃO - ENSAIO DE COMPACTAÇÃO COM CORRECÇÃO - DETERMINAÇÃO DO CBR	
- EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS - DETERMINAÇÃO DA MATÉRIA ORGÂNICA - ENSAIO DE COMPACTAÇÃO - ENSAIO DE COMPACTAÇÃO COM CORRECÇÃO	
- EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS - DETERMINAÇÃO DA MATÉRIA ORGÂNICA - ENSAIO DE COMPACTAÇÃO	
- EQUIVALENTE DE AREIA - AZUL DE METILENO EM SOLOS	
- EQUIVALENTE DE AREIA	
	ľ
X - LIMITES DE CONSISTÊNCIA	
X - ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)	
X - TEOR EM ÁGUA NATURAL	

ENGENHARIA -	VEGE		QUADRO RESUMO - SOLOS	Cliente:	
Amostra №	118 / 2021	Obra:	064.21PRJ	Rockbuilding	
Laboratório Refª	Central	Colheita:	S10 (6,00m - 6,45m)		

Laboratório Refª Centro	Coll	heita:	S10 (6,00m - 6,45m)
Utiliza	ıção		
Classificação	Unificada		SM Areia siltosa
Classificação para	fins Rodoviá	rios	A-4 (1)
		· · · · · · · · · · · · · · · · · · ·	
Análise Granulométrica	Peneiração (% Total Passada)	1" 100,0 3/4" 100,0 # 4 100,0 # 10 98,6 # 200 40,5	90 80 70 70 60 80 80 80 80 80 80 80 80 80 80 80 80 80
Teor em Água (%)		22,3	20
Teor em Matéria Orgâni	ica (%)		0,01 0,10 1,00 10,00 100,00 Dimensão das particulas (mm)
Equivalente de Areia	(%)		50
Azul de Metileno			
Limite de Liquidez (S		NR NR	Indice de Plasticidade (%) CH CH OH OH OH
Índice de Plasticidade		NP NP	GL MH OH
Limite de Retracção			in findice or
Massa Volúmica das Particulas Secas	> 3/4" > #4 e < 3/4" > #4		0 10 20 30 40 50 60 70 80 90 100 Limite de Liquidez (%)
(g/cm³)	< #4		2,02
Ensaio de Compactação 	γd _{máx} (g/cm ³) W _{opt} (%)		1,98 (c) 1,96 D) 1,94 D) 1,94 D) 1,94 D) 1,94 D) 1,94 D) 1,98 D) 1,
CBR im	CBR (%)		U 1,92 U 1,90
95% de Compactação Relativa	Expans. (%)		D 1,88
Coeficiente Fragmentab	ilidade		1,84 1,82
Coeficiente Degradabili			1,82
Observações:			

Observações:			
Operador colheita:	Visto:	Data colheita:	Pág.
Carlos Ribeiro	79	13/12/2021	2/2

Provete		1	2
Massa do recipiente	(g)	315,73	
Massa do recipiente + provete húmido	(g)	839,50	
Massa do recipiente + provete seco	(g)	744,08	
Massa da água	(g)	95,42	
Massa do provete seco	(g)	428,35	
Teor em água	(%)	22,28	

(%)

22,3

TEOR EM ÁGUA MÉDIO

Observações:			
	, , , , , , , , , , , , , , , , , , ,	T	
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	/ <u>%</u>	13/12/2021	1/1
Carios Ribello	NO.	13/12/2021	/ _

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE

ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)

LNEC E 239

Cliente:

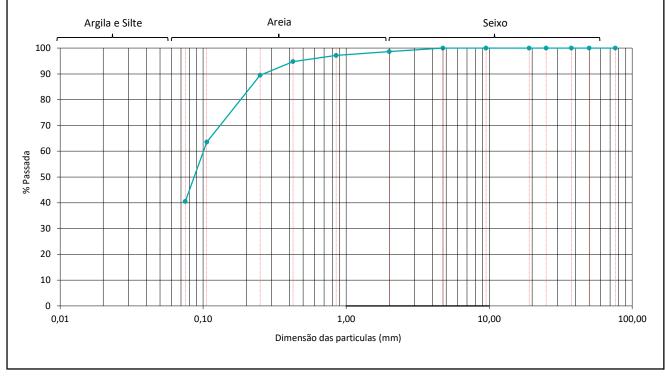
Amostra №

118 / 2021

Obra:

064.21PRJ

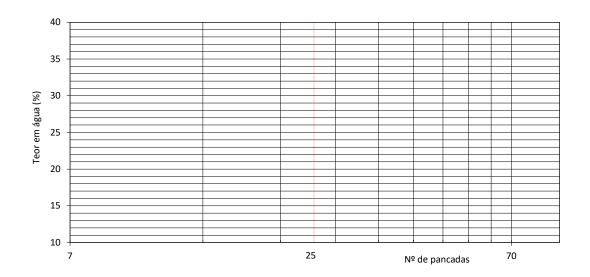
Rockbuilding


Laboratório Refa **Central**

Colheita:

S10 (6,00m - 6,45m)

Massa total do proveto	(g)	71 1	Massa total da fracção fina seca antes de lavada (g)	
Massa total do provete (g)	/1,1	Massa total da fracção fina seca depois de lavada (g)	41,3	


Peneiros (U.S.A.)	Peneiros (mm)	Massa retida (g)	% Retida	% Ac. retida	% Ac. passada
3"	76,1	0,0	0,0	0,0	100,0
2"	50,0	0,0	0,0	0,0	100,0
1 1/2"	37,5	0,0	0,0	0,0	100,0
1"	25,0	0,0	0,0	0,0	100,0
3/4"	19,0	0,0	0,0	0,0	100,0
3/8"	9,50	0,0	0,0	0,0	100,0
# 4	4,75	0,0	0,0	0,0	100,0
# 10	# 10 2,00		1,4	1,4	98,6
Total Frac	ção Grossa	1,0	1,4		
# 20	0,850	1,07	1,5	2,9	97,1
# 40	0,425	1,69	2,4	5,3	94,7
# 60	0,250	3,75	5,3	10,5	89,5
#140	0,106	18,45	25,9	36,5	63,5
# 200	0,075	16,35	23,0	59,5	40,5
Fui	ndo	28,84	40,5	100,0	0,0
Total Fra	cção Fina	70,15	98,6		

Observações:					
		CU =	6,1	CC =	
Operador:	Visto:	Data:			Pág.
Carlos Ribeiro	(*)		14/	12/2021	1/1

LIMITES DE CONSISTÊNCIA (LL, LP) Amostra № 118 / 2021 Colheita: Colheita: Cliente: NP 143 Cliente: Rockbuilding

	Provete		1	2	3	4
2	Massa do recipiente	(g)				
LIQUIDEZ	Massa do recipiente + provete húmido	(g)				
	Massa do recipiente + provete seco	(g)				
E DE	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
	Teor em água	(%)		-		
	N.º de pancadas					

	Provete		1	2	3	4
\DE	Massa do recipiente	(g)				
CID/	Massa do recipiente + provete húmido	(g)				
PLASTICIDADE	Massa do recipiente + provete seco	(g)				
DE PI	Massa da água	(g)				
LIMITE	Massa do provete seco	(g)				
M	Teor em água	(%)				
	Valor Médio	(%)		-	-	

RESULTADOS OBTIDOS							
LIMITE DE LIQUIDEZ (%	NR	LIMITE DE PLASTICIDADE (%)	NR	ÍNDICE DE PLASTICIDADE (%)	NP		

Observações:			
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	/\ <u>\</u>	15/12/2021	1/1

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE Cliente: **ENSAIOS REALIZADOS - SOLOS** Obra: 119 / 2021 064.21PRJ Rockbuilding Colheita: Central S10 (12,00m - 12,45m)

	Х	-	TEOR EM ÁGUA NATURAL
	Х	-	ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)
	Х	-	LIMITES DE CONSISTÊNCIA
		-	EQUIVALENTE DE AREIA
		-	AZUL DE METILENO EM SOLOS
		-	DETERMINAÇÃO DA MATÉRIA ORGÂNICA
		-	ENSAIO DE COMPACTAÇÃO
		-	ENSAIO DE COMPACTAÇÃO COM CORRECÇÃO
		-	DETERMINAÇÃO DO CBR
		-	MASSAVOLUMICA E ABSORÇÃO EM ÁGUA
		-	COEFICIENTE DE FRAGMENTABILIDADE
		-	COEFICIENTE DE DEGRADABILIDADE
Observações:			

Observações:			
Operador colheita:	Visto:	Data colheita:	Pág.
Carlos Pibeiro	/ ^V / _e)	13/12/2021	1/2

ENGENHARIA .	+ GEOLOGIA + ENERGIA	QUADRO RESUMO - SOLOS Obra:		Cliente:
Amostra №	119 / 2021			Rockbuilding
Laboratório Refª	Laboratório Ref [®] Central		S10 (12,00m - 12,45m)	

aboratório Refª Centi	ral	eita:	S10 (12,00m - 12,45m)
Utilização			
Classificaçã	o Unificada		SM Areia siltosa
Classificação para	a fins Rodoviário	os	A-2-4 (0)
		1" 100,0	100
Análise Granulométrica	Peneiração (% Total Passada)	3/4" 100,0 #4 92,1 #10 80,2 #200 35,4	80 70 Ep 60 Ep 60 80 40 80 40 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80
Teor em Água (%	5)	19,3	20
Teor em Matéria Orgânica (%)			0 0,01 0,10 1,00 10,00 100,00 Dimensão das particulas (mm)
Equivalente de Areia	a (%)		
Azul de Metilend)		\$\times 40
Limite de Liquidez		NR NR	ludice de Plasticidade (%) 40 CH MH OH
Índice de Plasticidad Limite de Retracção	e (%)	NP	e CL MH OH
Limite de Netracção	(70)		ML OL
Massa Volúmica das Particulas Secas	> 3/4" > #4 e < 3/4" > #4		10 20 30 40 50 60 70 80 90 100 Limite de Liquidez (%)
(g/cm ³)	< #4		2,02
Ensaio de Compactação 	γd _{máx} (g/cm ³) W _{opt} (%)		1.98 (EU) 1.96 (D)
CBR im	CBR (%)		V 1,90 U 1,88 U
95% de Compactação Relativa	Expans. (%)		D 1.86 1.84 1.84
Coeficiente Fragmental Coeficiente Degradabi		 	1,82 1,82 1,80 10,0 Teor em água (%)

Observações:			
Operador colheita:	Visto:	Data colheita:	Pág.
Carlos Ribeiro	/*)	13/12/2021	2/2

Provete		1	2
Massa do recipiente	(g)	359,51	
Massa do recipiente + provete húmido	(g)	1119,52	
Massa do recipiente + provete seco	(g)	996,32	
Massa da água	(g)	123,20	
Massa do provete seco	(g)	636,81	
Teor em água	(%)	19,35	

TEOR EM ÁGUA MÉDIO	(%)	19,3
--------------------	-----	------

Observações:			
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	/*)	13/12/2021	1/1

ENGENHARIA + GEOLOGIA + ENERGIA SYNEGE

ANÁLISE GRANULOMÉTRICA - SOLOS (PENEIRAÇÃO)

LNEC E 239

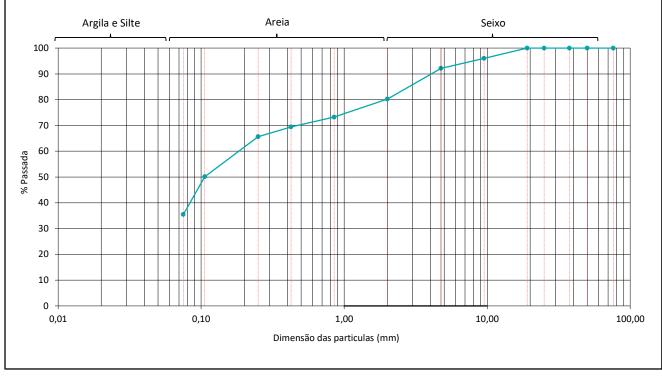
Cliente:

Amostra Nº 119

119 / 2021 Obra:

064.21PRJ

Rockbuilding


Laboratório Refª *Central*

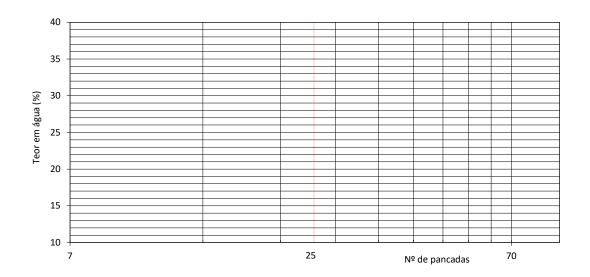
Colheita:

S10 (12,00m - 12,45m)

Massa total do provete (g) 150,5	150,5	Massa total da fracção fina seca antes de lavada	3)		
iviassa total do provete	(8)		Massa total da fracção fina seca depois de lavada (g	g)	67,4

Peneiros (U.S.A.)	Peneiros (mm)	Massa retida (g)	% Retida	% Ac. retida	% Ac. passada
3"	76,1	0,0	0,0	0,0	100,0
2"	50,0	0,0 0,0 0,0		0,0	100,0
1 1/2"	37,5	0,0	0,0	0,0	100,0
1"	25,0	0,0	0,0	0,0	100,0
3/4"	19,0	0,0	0,0	0,0	100,0
3/8"	9,50	6,1	4,0	4,0	96,0
# 4	4,75	5,8	3,9	7,9	92,1
# 10	2,00	17,9	11,9	19,8	80,2
Total Frac	Total Fracção Grossa		19,8		
# 20	0,850	10,52	7,0	26,8	73,2
# 40	0,425	5,71	3,8	30,6	69,4
# 60	0,250	5,73	3,8	34,4	65,6
#140	0,106	23,32 15,5 49,9		49,9	50,1
# 200	0,075	22,13	14,7	64,6	35,4
Fur	Fundo		35,4	100,0	0,0
Total Fra	cção Fina	120,70	80,2		

Observações:					
		CU =	10,4	CC =	
Operador:	Visto:	Data:			Pág.
Carlos Ribeiro	/ <u>(</u>)		14,	12/2021	1/1


Colheita:

Central

Laboratório Refª

	Provete		1	2	3	4
LIMITE DE LIQUIDEZ	Massa do recipiente	(g)				
	Massa do recipiente + provete húmido	(g)				
	Massa do recipiente + provete seco	(g)				
	Massa da água	(g)				
	Massa do provete seco	(g)				
	Teor em água	(%)				
	N.º de pancadas					

S10 (12,00m - 12,45m)

	Provete		1	2	3	4
LIMITE DE PLASTICIDADE	Massa do recipiente	(g)				
	Massa do recipiente + provete húmido	(g)				
	Massa do recipiente + provete seco	(g)				
	Massa da água	(g)				
	Massa do provete seco	(g)				
	Teor em água	(%)				
	Valor Médio	(%)				

RESULTADOS OBTIDOS							
LIMITE DE LIQUIDEZ	(%)	NR	LIMITE DE PLASTICIDADE (%)	NR	ÍNDICE DE PLASTICIDADE (%)	NP	

Observações:			
Operador:	Visto:	Data:	Pág.
Carlos Ribeiro	/\ <u>\</u>	15/12/2021	1/1