

MEMORIA DESCRITIVA E JUSTIFICATIVA

PROJECTO DE DRENAGEM PREDIAL DE ÁGUAS RESIDUAIS DOMÉSTICAS, PLUVIAIS, LIXIVIADAS E PERMEADO

DRENAGEM PREDIAL DE ÁGUAS REDIDUAIS DOMÉSTICAS

Circuito Doméstico

Todo o esgoto é conduzido até às fossas estanques e daí é feita a sua trasfega até à ETAL, através de meios móveis adequados ao transporte de massas líquidas.

As águas residuais domésticas provenientes das zonas de lavagem, são objeto de tratamento prévio através da sua condução e passagem por separadores de hidrocarbonetos, sendo a jusante ligadas à rede de coletores de águas residuais domésticas.

O esgoto proveniente dos diversos dispositivos sanitários é recolhido por ramais de descarga em PVC rígido embebidos nos pavimentos e com inclinações compreendidas entre 10 e 40 mm/m.

Os ramais de descarga provenientes das caixas de pavimento, ligam a tubos de gueda em PVC, sempre bem aprumados e com ventilação primária. Os tubos de queda desembocam em caixas de visita.

Os ramais de descarga provenientes das caixas de pavimento, situados nas instalações do piso térreo ligaram a caixas de visita.

A ligação entre câmaras de inspeção está assegurada por coletores prediais com diâmetros e inclinações apresentadas nas peças desenhadas.

Caudais nos Pontos de Descarga: Estimados a partir dos consumos de água medidos em cada ponto de consumo através de contador.

Designação	Instalação Servida	Caudal Médio Mensal (m3)	N.º de dias em serviço por mês (Dias)	Caudal Diário (m3/dia)
Fossa 1	Portaria	46	20	2,3
Fossa 2	UTMB	111	20	5,55
Fossa 3	Lavandaria	98	20	4,9
Fossa 4	Serviços Administrativos	11	20	0,55
Fossa 5	Triagem	74	20	3,7
Fossa 6	Refeitório e Balneários	99	20	4,95
Fossa 7	Lavagem	150	20	7,5

DISPOSIÇÕES CONSTRUTIVAS - MATERIAIS UTILIZADOS

Ramais de descarga:

Os ramais de descarga são constituídos por tubagens em PVC com junta autoblocante. O traçado está realizado em troços rectilíneos unidos por curvas de concordância, facilmente desobstruíveis sem necessidade de proceder à sua desmontagem.

Os ramais de descarga estão embutidos nas paredes e pavimentos, de forma a não afectar a resistência dos elementos estruturais.

Quando os ramais de descarga desembocam directamente em caixas de inspecção, a sua ligação está efectuada por queda guiada.

Sifões

Todos os aparelhos sanitários serão sifonados. Assim serão colocados sifões de garrafa nos bidés e lavatórios, sifões em latão cromado e de acordo com os ramais de descarga.

Nas bancas de cozinha serão instalados sifões de gordura, em polietileno de alta densidade, com o interior perfurado para limpeza periódica.

Os restantes dispositivos tais como tanque lava roupa, máquinas de lavar e chuveiros, serão sifonados por curvas de sifonagem em PVC, a instalar nas caixas de pavimento.

Caixas de pavimento

As caixas de pavimento são elementos destinados a recolher o esgoto residual proveniente dos ramais de descarga dos diversos dispositivos sanitários.

As caixas de pavimento são construídas em PVC, embebidas nos pavimentos, levarão tampas roscadas em latão cromado.

Câmara de inspecção

As câmaras de saneamento (caixas de visita e caixa interceptora) serão executadas em tijolo ou blocos, rebocado, assente em fundação de betão tendo tampas hidráulicas em ferro metalizado com acabamento igual ao piso.

Câmara de Visita:

Entre coletores principais encontram construídas câmara de visita em anéis de betão com tampa em ferro fundido.

Tubos de queda

Os tubos de queda são constituídos por tubagens em PVC com junta autoblocante.

O seu traçado é vertical e os tubos serão inseridos em "Corettes" ou em paredes de forma a não afectar os elementos estruturais.

Colectores Prediais:

Os colectores prediais são constituídos por tubagens em PVC com junta autoblocante.

A sua instalação é enterrada em valas.

No caso em que os colectores estão enterrados, estes serão assentes em almofada de areia até ao semi - diâmetro.

A parte restante da vala será efectuada por produtos resultantes da escavação, sendo bem apiloada de forma a não danificar as tubagens.

Na ligação dos colectores às caixas de visita deverá garantir-se a estanquidade absoluta.

Fossas Estanques:

As fossas estanques são constituídas por fundação, paredes e laje de cobertura em betão armado.

Separador de Hidrocarbonetos:

Os separadores de hidrocarbonetos são de construção em PEAD, de acordo com a norma EN 858-1:2002 e cumprem com os requisitos da diretiva 89/106/CE dos produtos de construção.

DRENAGEM PREDIAL DE ÁGUAS PLUVIAIS

Circuito pluvial

Todo o esgoto pluvial proveniente das chuvadas caídas nas coberturas do prédio, é recolhido por caleiras que conduzirão as águas pluviais pluvial aos tubos de queda. Ao nível dos arruamentos todas as águas pluviais são captadas por caleiras e sumidouros. Os tubos de queda, caleiras e sumidouros desembocam em caixas de visita. O circuito entre caixas de visita está assegurado por colectores prediais. Todo o esgoto será conduzido até aos coletores que conduzem as águas pluviais até ás linhas de água referenciadas nas peças desenhadas.

Cálculo hidráulico

O cálculo hidráulico dos diversos elementos que constituem a rede pluvial, foram dimensionados, atendendo às disposições regulamentares em vigor.

Assim como dados gerais teremos:

Zona pluviométrica - Zona A

Intensidade média de precipitação (caudal unitário)

 $Im = a * tp^b$

tp - tempo de precipitação-15min

a,b - parâmetros função da zona

Foi considerado um tempo de recorrência de 5 anos.

Na página seguinte apresenta-se os quadros com o cálculo hidráulico de verificação do dimensionamento da rede:

DADUS	PARA	U GAL	.culo Dos	GAUD	AIS DI	- FRUJE				
Periodo de Retorno =		5	Anos			Regiã	o Pluviométri	ca =	Α	
	TROÇOS		ARRUAMENTOS			AREAS D	RENANTES	COEF. ES	SCOAMENTO	
	Caixas	de Visita		Cotas d	o Terreno					
Designação	Montante	Jusante	Comprimento	Montante	Jusante	Inclinação	Troço	Acumuladas	Troço	Ponderado
			(m)	(m)	(m)	(%)	(ha)	(ha)		
EH 1	1	2	23	147,80	147,45	1,52%	1,7500	1,7500	0,75	0,75
EH 2	1	2	35	153,44	153,09	1,00%	2,6000	2,6000	0,75	0,75
EH 3	1	2	15	148,65	148,50	1,00%	4,8000	4,8000	0,75	0,75
Regiões	Α	1	В			С				
T (Anos)	а	b	а	b	а	b				
2	202,72	-0,577	162,18	-0,577	243,26	-0,577				
5	259,26	-0,562	207,41	-0,562	311,11	-0,562		а	b	
10	290,68	-0,549	232,21	-0,549	348,82	-0,549		259,26	-0,562	
20	317,74	-0,538	254,19	-0,538	381,29	-0,538				
50	349,54	-0,524	279,63	-0,524	419,45	-0,524				
100	365,62	-0,508	292,5	-0,508	438,75	-0,508				
l = at ^b = In	tensidad	e média r	máxima de pre	cipitação	(mm / h	a) para a o	duração de	t (min.)		
a,b = Cons	stantes qu	e depend	dem do period	o de retor	no.					
Dec.Lei nº	23/95 de 2	3 de Agos	sto (art.128º a 1	30º; Anex	o IX e X)					

CALCUI	CALCULO DOS CAUDAIS DE PROJECTO:									
Tempo de	Tempo de Entrada 15		Minutos							
TROÇOS	OS TEMPOS CAUDAIS DE PR		S DE PROJE	СТО		COLECTORES				
	Percurso	Percurso	Intensidade	Escoamento	Caudal	D:::		Capacidade	Velocidade	Poder de
Designação	de	no	de	Especifico	de	Diâmetro Mínimo	Inclinação	Secção	Secção	Transporte
	Montante	Troço	Precipitação		Projecto			Cheia	Efectiva	Secção Cheia
	(min.)	(min.)	(mm / h)	(m3 / (s.ha))	(m3/s)	(m)	(%)	(m3/s)	(m/s)	(N/m2)
EH 1	15,00	0,20	56,59	0,117905	0,206333	0,400	1,52%	0,238794	1,941	14,928
EH 2	15,00	0,28	56,59	0,117905	0,306552	0,600	1,00%	0,570729	2,058	14,715
EH 3	15,00	0,12	56,59	0,117905	0,565942	0,600	1,00%	0,570729	2,054	14,715
Vmin. =	0,90	(m/s)	Poder Transp	. Minimo	4	(N/m2)		γ=	9810	N/m3
Vmax. =	5,00	(m/s)	n =	0,014						
Ymax. =	D	(m)								

Verifica-se que para todas as passagens hidráulicas de ligação do sistema às linhas de água as condições de escoamento estão regulamentarmente cumpridas, para as actuais condições de funcionamento da instalação.

Contudo, ao considerar o caudal pluvial proveniente da célula 2 do aterro que ligará à passagem hidráulica EH 3 (ver projeto de exploração da célula 2 do aterro), verifica-se que após selagem o caudal proveniente é de 0.57168 m³/s.

Neste contexto o caudal total a considerar para o dimensionamento do órgão referido é de:

 $Q = 0.57168 + 0.565942 = 1.137622 \text{ m}^3/\text{s}.$

Assim, temos:

DADOS PARA O CALCULO DOS CAUDAIS DE PROJECTO:										
DADUS	PARA	UGAL	.coro bos	GAUD	AIS DI	PRUJE				
Periodo de Retorno =		5	Anos			Regiã	o Pluviométri	ica =	Α	
	TROÇOS	oços		ARRUAMENTOS			AREAS DI	RENANTES	COEF. ES	SCOAMENTO
	Caixas	de Visita		Cotas de	o Terreno					
Designação	Montante	Jusante	Comprimento	Montante	Jusante	Inclinação	Troço	Acumuladas	Troço	Ponderado
			(m)	(m)	(m)	(%)	(ha)	(ha)		
EH 1	1	2	23	147,80	147,45	1,52%	1,7500	1,7500	0,75	0,75
EH 2	1	2	35	153,44	153,09	1,00%	2,6000	2,6000	0,75	0,75
EH3	1	2	15	148,65	148,50	1,00%	9,6490	9,6490	0,75	0,75
Regiões	Α	١	В		(С				
T (Anos)	а	b	а	b	а	b				
2	202,72	-0,577	162,18	-0,577	243,26	-0,577				
5	259,26	-0,562	207,41	-0,562	311,11	-0,562		а	b	
10	290,68	-0,549	232,21	-0,549	348,82	-0,549		259,26	-0,562	
20	317,74	-0,538	254,19	-0,538	381,29	-0,538				
50	349,54	-0,524	279,63	-0,524	419,45	-0,524				
100	365,62	-0,508	292,5	-0,508	438,75	-0,508				
I = at ^b = In	tensidad	e média r	náxima de pre	cipitação	(mm / h	a) para a	duração de	t (min.)		
•	a,b = Constantes que dependem do periodo de retorno.									
Dec.Lei nº	23/95 de 2	23 de Agos	sto (art.128º a 1	30º; Anex	o IX e X)					

CALCULO DOS CAUDAIS DE PROJECTO:											
Tampa de	- Cotrada	15	Minutes								
Tempo de Entrada 15 Minutos											
TROÇOS	TEMP	os	CAUDAI	S DE PROJECTO			COLECTORES				
	Percurso	Percurso	Intensidade	Escoamento	Caudal	D: 2 1		Capacidade	Velocidade	Poder de	
Designação	de	no	de	Especifico	de	Diâmetro Mínimo	Inclinação	Secção	Secção	Transporte	
	Montante	Troço	Precipitação		Projecto			Cheia	Efectiva	Secção Cheia	
	(min.)	(min.)	(mm / h)	(m3 / (s.ha))	(m3/s)	(m)	(%)	(m3/s)	(m/s)	(N/m2)	
EH 1	15,00	0,20	56,59	0,117905	0,206333	0,400	1,52%	0,238794	1,941	14,928	
EH 2	15,00	0,28	56,59	0,117905	0,306552	0,600	1,00%	0,570729	2,058	14,715	
EH3	15,00	0,08	56,59	0,117905	1,137662	0,710	1,67%	1,154268	2,963	29,021	
Vmin. =	0,90	(m/s)	Poder Transp	. Minimo	4	(N/m2)		γ =	9810	N/m3	
Vmax. =	5,00	(m/s)	n =	0,014							
Ymax. =	D	(m)									

Nestas condições e no horizonte de projeto, verifica-se a necessidade de proceder a obras de requalificação da passagem hidráulica EH3, no sentido de a dotar de maior inclinação (1,67%) e de aumentar o diâmetro para ϕ 0710.

DISPOSIÇÕES CONSTRUTIVAS - MATERIAIS UTILIZADOS

Caleiras:

As caleiras são em betão nos pavimentos e em chapa lacada nas coberturas.

Tubos de queda:

Os tubos de queda são constituídos por tubagens em PVC com embocadura por colagem.

O seu traçado é vertical e os tubos estão embutidos nas paredes por forma a não comprometer a resistência estrutural do edifício e de instalação à vista.

Colectores Prediais:

Os colectores prediais são constituídos por tubagens em PVC com junta autoblocante. Os coletores estão enterrados em valas e estão assentes em almofada de areia até ao semi - diâmetro.

A parte restante da vala está efectuada por produtos resultantes da escavação, sendo bem apiloada de forma a não danificar as tubagens.

O calibre mínimo dos colectores entre caixas de visita é são os que se encontram definidos nas peças desenhadas.

Caixas de Visita:

As caixas de visita têm as dimensões indicados em projecto e serão construídos em alvenaria de blocos de argamassa com 15 cm de espessura, assentes com argamassa de cimento e areia ao traço 1:3, sendo rebocados interiormente.

Câmara de Visita:

Entre coletores principais encontram construídas câmara de visita em anéis de betão, com cúpula superior troncocónica com tampa em ferro fundido.

DRENAGEM ÁGUAS LIXIVIADAS

Circuito de Águas Lixiviadas

Todas as águas lixiviadas produzidas na massa de resíduos contida nas células do aterro, são conduzidas e captadas em poços de bombagem. Nos poços de bombagem encontram-se instaladas bombas submersíveis, dotadas de ralos de proteção que impedem a entrada no circuito hidráulico de sólidos de maior dimensão. Todas as águas lixiviadas são conduzidas até à lagoa 1 através dum circuito de tubagem em PEAD PN16, conforme indicado nas peças desenhadas.

A trasfega da massa líquida de lixiviado entre lagoas é feita através de bombas submersíveis dotadas da mesma proteção acima mencionada, e dum circuito hidráulico com tubagem de PEAD PN 16, que estabelece a ligação entre lagoas, onde a partir da lagoa 4 é feita a ligação à ETAL.

DISPOSIÇÕES CONSTRUTIVAS - MATERIAIS UTILIZADOS

Tubagem de Pressão:

Os circuitos hidráulicos estão constituídos por tubagem de PEAD PN10.

Bombas Submersíveis:

As bombas são construídas com câmara em canal aberto, sendo o seu corpo em aço-inox e/ou ferro fundido.

DRENAGEM DE PERMEADO

Circuito de Permeado

Após o processo de tratamento das águas lixiviadas nas Osmoses Inversas, um dos efluentes gerados é designado de permeado.

Este fluido é conduzido através dum sistema de colectores de PVC até uma lagoa onde é promovido o processo de oxigenação da massa líquida.

Após permanecer na lagoa, este efluente é bombado através dum circuito constituído por tubagem de PEAD até uma caixa de visita. A partir da referida caixa todo o efluente é conduzido de forma gravítica através de uma rede de coletores, conduzindo até ao ponto de descarga EH1.

O caudal máximo de permeado produzido na ETAL descarregado no ponto de descarga EH 1 é de 170 m3/dia. Contudo, sublinhe-se o facto de estarmos a aguardar por autorização para podermos proceder à reutilização deste efluente, para os fins mencionados no processo de licenciamento.

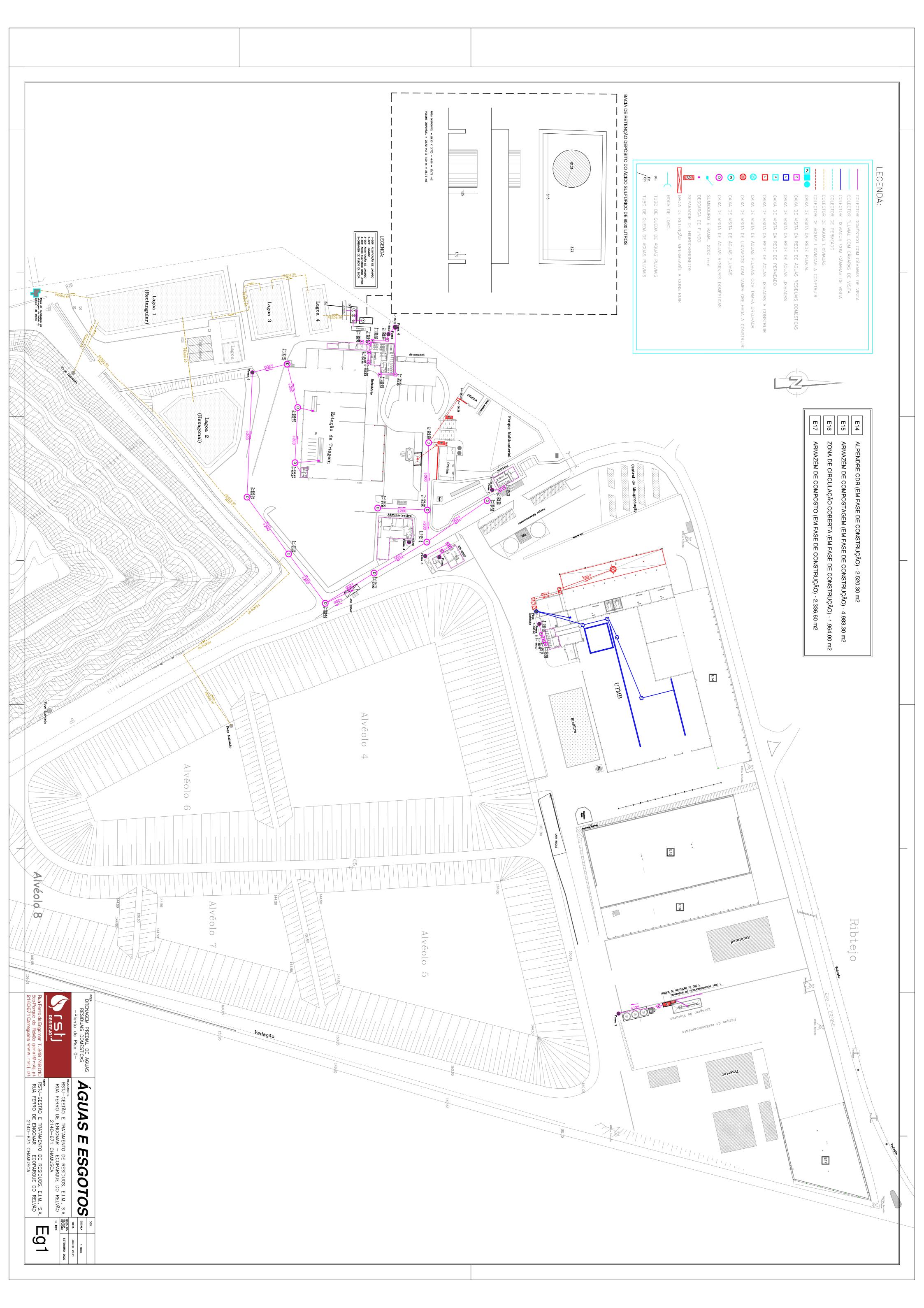
Colectores:

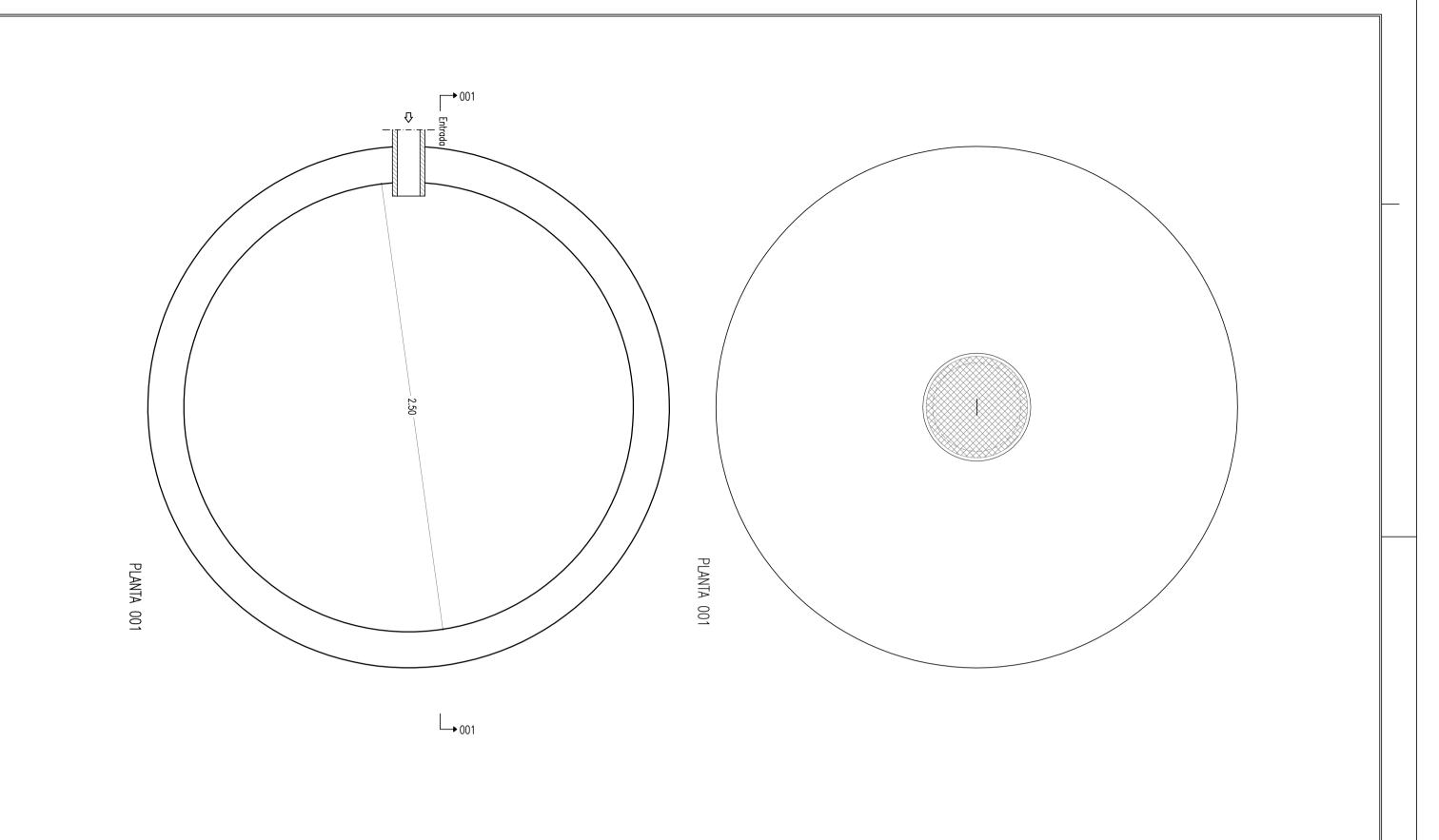
Os colectores são constituídos por tubagens em PVC com junta autoblocante. Os coletores estão enterrados em valas e estão assentes em almofada de areia até ao semi - diâmetro.

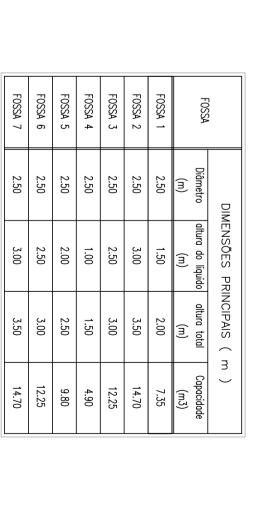
A parte restante da vala está efectuada por produtos resultantes da escavação, sendo bem apiloada de forma a não danificar as tubagens.

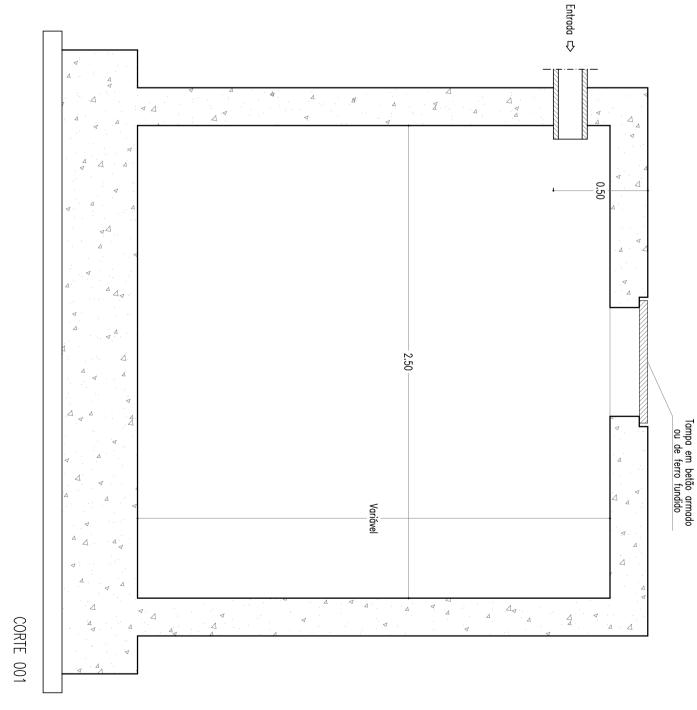
O calibre mínimo dos colectores entre caixas de visita é são os que se encontram definidos nas peças desenhadas

Caixas de Visita:

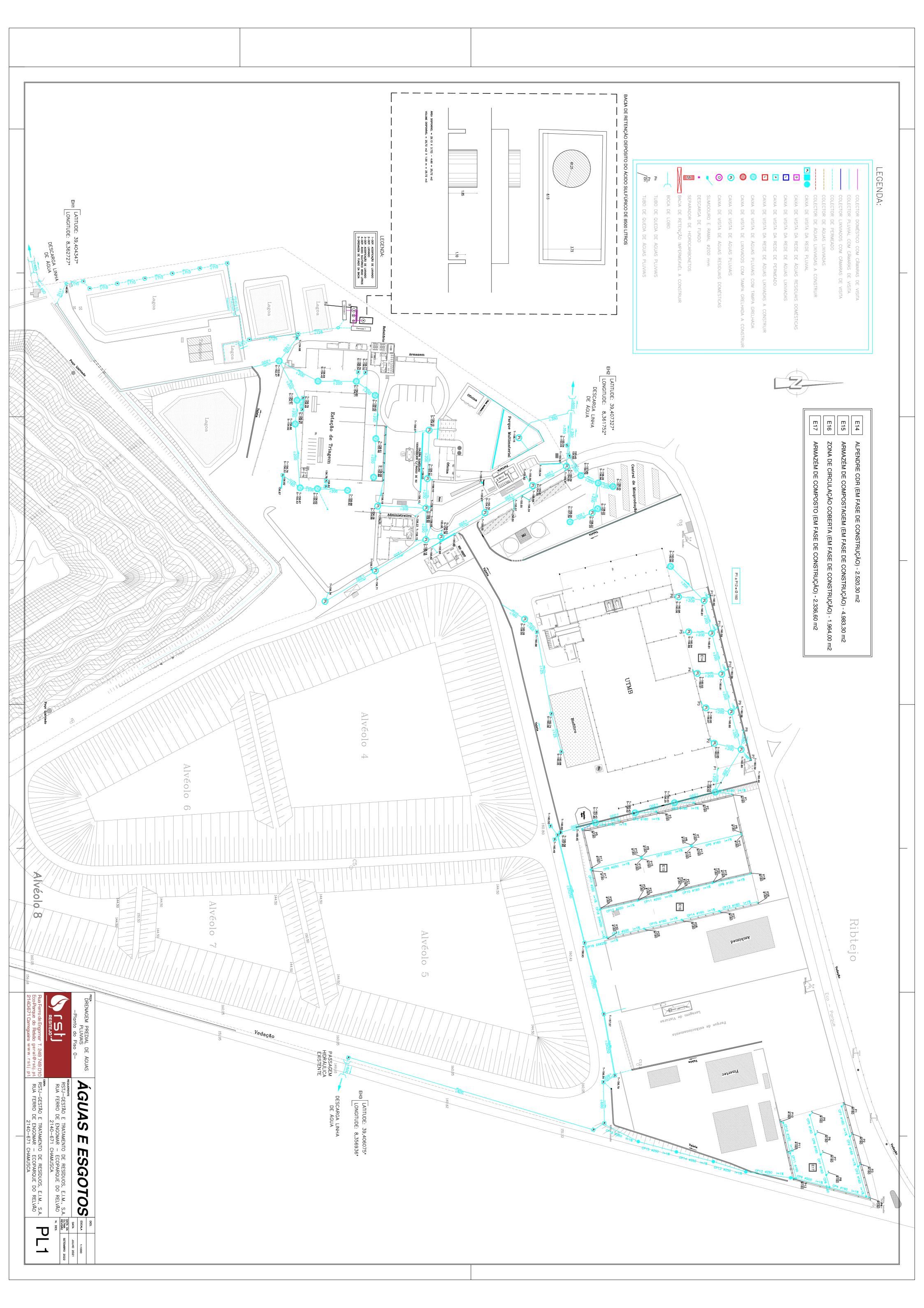

As caixas de visita têm as dimensões indicados em projecto e serão construídos em alvenaria de blocos de argamassa com 15 cm de espessura, assentes com argamassa de cimento e areia ao traço 1:3, sendo rebocados interiormente.

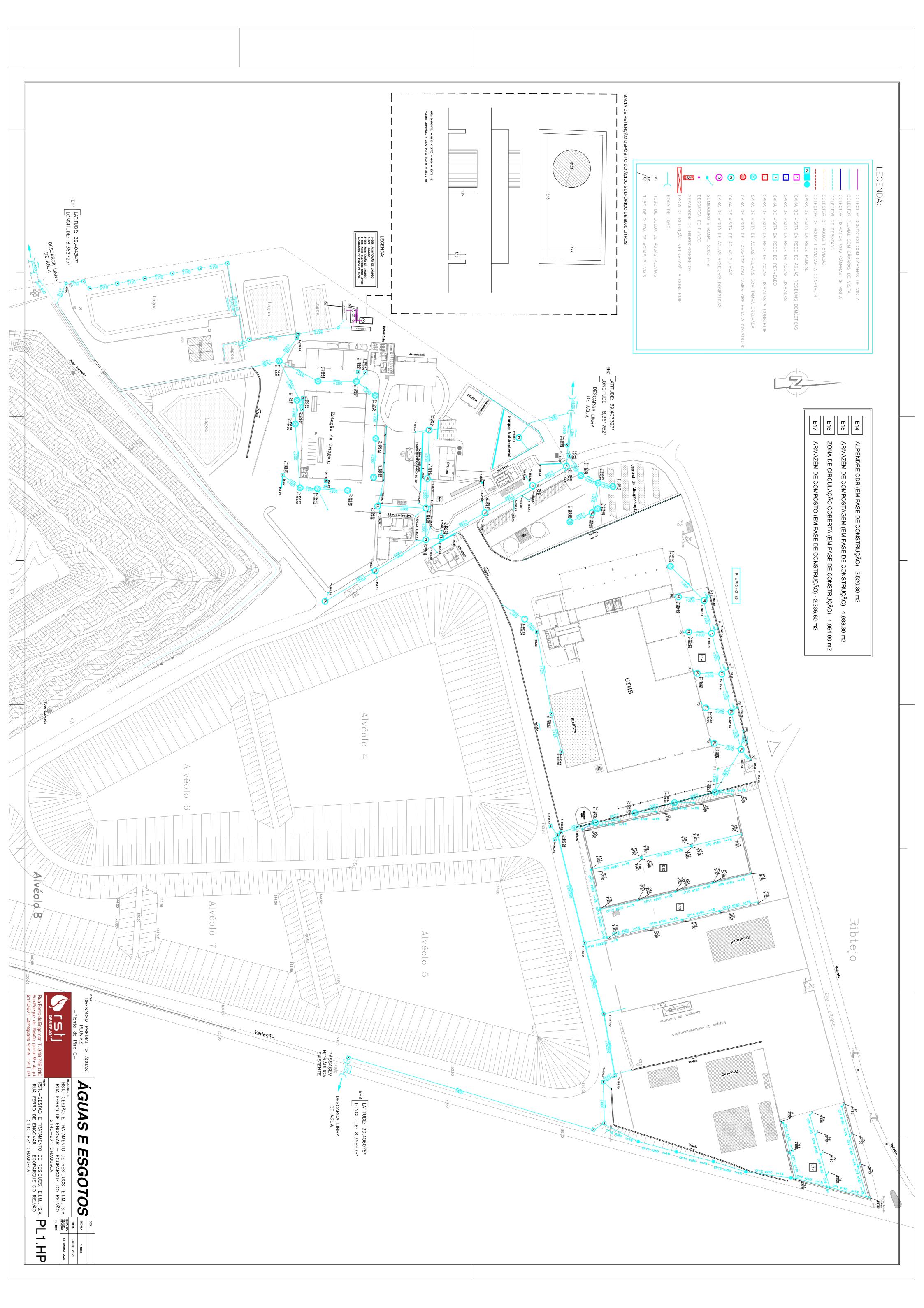

Tubagem de Pressão:


Os circuitos hidráulicos estão constituídos por tubagem de PEAD PN10.


Bombas Submersíveis:

As bombas são construídas com câmara em canal aberto, sendo o seu corpo em aço-inox e/ou ferro fundido.


DRENAGEM PREDIAL DE ÁGUAS RESIDUAIS DOMÉSTICAS —PORMENOR FOSSA ESTANQUE—


ÁGUAS Щ

REQUERENTE
RSTJ-GESTÃO E TRATAMENTO DE RESÍDUOS,
RUA FERRO DE ENGOMAR — ECOPARQUE D
2140-671 CHAMUSCA ESGOTOS ESCA

Rua Ferro de Engomar T. 249 749 010 RSTJ-GESTÃO E TRATAMENTO DE RESÍDUOS, E Eco-Parque do Relvão geral@rstj.pt RUA FERRO DE ENGOMAR - ECOPARQUE DO 2140-671 CHAMUSCA

, E.I.M., S.A.	DO RELVÃO	, E.I.M., S.A.		
П	N. DES.	DATA ÚLTIMA REVISÃO	DATA	ESCALA
<u>9</u> 2		SETEMBRO 2022	JULHO 2021	1:20

