

RELATÓRIO DE CARACTERIZAÇÃO DE EMISSÕES GASOSAS EM FONTES FIXAS

INCARPO - Indústria e Comércio de Carnes, S.A. Zona Industrial de Condeixa - CONDEIXA-A-NOVA

Aprovado por:

Diretor Técnico

Não é permitida a divulgação parcial dos resultados constantes deste relatório na qual se faça referência ao MMLAB, exceto com a devida autorização.

L0311 Ensaios

Índice

1 – Caracterização do operador	3
2 – Caracterização da entidade responsável pelos ensaios	3
2.1 – Laboratório de ensaio	3
2.2 – Equipa Técnica	3
3 - Descrição da monitorização	4
4 – Descrição das atividades desenvolvidas	4
4.1 – Datas das medições	4
4.2 – Tempos de amostragem e medição	4
4.3 – Procedimentos de medição	5
4.3.1 – Métodos de ensaio	5
4.3.2 – Equipamentos e materiais utilizados nas medições	5
5 – Descrição sumária da instalação abrangida	6
6 – Condições relevantes de operação	6
7 – Caracterização do local de amostragem	6
7.1 - Características da conduta	6
7.2 - Localização da amostragem	6
7.3 - Validação da localização do plano de amostragem	7
8 – Condições relevantes de escoamento	7
9 – Apresentação de resultados	8
9.1 - Resultados das medições	8
10 – Avaliação dos resultados	8
10.1 - Comparação dos resultados com os valores legais aplicáveis	8
10.2 - Conclusões	8
11 – Observações	8
11.1 - Desvios	8
11.2 - Condições específicas	8
11.3 - Outras	9

ANEXOS

Anexo I - Cálculos

Anexo II – Controlo da qualidade Anexo III – Certificado de Acreditação

Anexo IV – Certificados de Calibração Anexo V – Planta das Instalações

1 - Caracterização do operador

Identificação

INCARPO - Indústria e Comércio de Carnes, S.A.

Morada

Zona Industrial de Condeixa - CONDEIXA-A-NOVA

Atividade

Indústria de Carnes

Instalações abrangidas:

Produção

Licença ambiental n.º:

1º Aditamento à LA nº422/0.0/2011 de 1 de Dezembro de 2015

2 - Caracterização da entidade responsável pelos ensaios

2.1 - Laboratório de ensajo

Identificação

MMLab – Laboratório de Medições da MANUEL MARTINS, Serviços de Engenharia, Lda

Morada

Rua José Carlos Afonso, Lote 25, Cruz da Areia, 2410-049 Leiria

											C	on	ta	cto	os	;

Ricardo Lobo Tlm: 0351 91 78 49 361 E-mail: ricardolobo@manuel-martins.pt

Certificado de acreditação

L311-1 (http://www.ipac.pt/docsig/?XE47-7CJ1-L99L-V5U9)

2.2 - Equipa Técnica

Amostragem e medições em campo								
José Oliveira	Técnico qualificado							
Ricardo Lobo Engenheiro da Energia e do Ambiente Responsável to								
Determinações analíticas no laboratório								
José Oliveira	Técnico de HST e Ambiente	Técnico qualificado						
Ricardo Lobo	Engenheiro da Energia e do Ambiente	Responsável técnico						
Validação técnica dos ensaios e respetivos resultados								
Ricardo Lobo	Engenheiro da Energia e do Ambiente	Responsável Técnico						

3 - Descrição da monitorização

Objetivo

Caracterização de efluentes gasosos para verificação da conformidade legal dos resultados obtidos com a legislação sobre emissões de poluentes atmosféricos: 1º Aditamento à LA nº422/0.0/2011 de 1 de Dezembro de 2015 (VLE) e Portaria n.º 80/2006 de 23 de Janeiro (caudais mássicos)

Tipo

Autocontrolo - Monitorização pontual – Regime Trienal

	Fonte alvo de monitorização		
Descrição	Marca	Modelo	Potência
FF1 - Caldeira Ambitermo	Ambitermo	SBC-s 130	4100kWh

Parâmetros					
Partículas totais					
NO _x (Óxidos de Azoto expressos em NO ₂)					
COV's (Compostos orgânicos voláteis)					

4 - Descrição das atividades desenvolvidas

4.1 - Datas das medições

Amostragem e ensaios de campo

26 de dezembro de 2017

Determinações analíticas no laboratório

29 de dezembro de 2017

Emissão do relatório de ensaio

9 de fevereiro de 2018

4.2 - Tempos de amostragem e medição

Dovêmetre	Horário (h	Duração (min)	
Parâmetro	Início	Fim	Duração (min)
Velocidade, Humidade, O2 e CO2	09:16	9:48	32
Partículas totais	09:16	9:48	32
NO _x	09:16	9:48	32
COV's	09:16	9:48	32

MMLab – Laboratório de Medições da Manuel Martins – Serviços de Engenharia, Lda. SEDE: Rua José Carlos Afonso, Lt. 25 – Cruz d'Areia – 2410-049 Leiria / Tel:244 801 010 / Fax: 244 801 115 FILIAL: Avenida D. Nuno Álvares Pereira, nº114, Fr. F., Ioja 2, 2490-484 Ourém www.manuel-martins.pt / email: geral@manuel-martins.pt

4.3 - Procedimentos de medição

4.3.1 - Métodos de ensaio

Parâmetro	Método de Ensaio	Técnica analítica	Amostragem	Determinação analítica
Determinação da velocidade e caudal	NP ISO 10780:2000	-	Ac	-
Amostragem e determinação de humidade	NP EN 14790:2012	Gravimetria	NAc	NAc
Amostragem e determinação da concentração O ₂	EN 14789:2005	Paramagnetismo	NAc	NAc
Amostragem e determinação de partículas totais. *	NP EN 13284-1:2009	Gravimetria	NAc	NAc
Amostragem e determinação da concentração de NO _x	EN 14792:2005	Quimiluminescência	NAc	NAc
Amostragem e determinação da concentração de COV's	EN 12619:2013	Ionização de chama	NAc	NAc

Legenda: AC - Parâmetro incluído no âmbito da acreditação, NAc - Parâmetro não incluído no âmbito de acreditação; SAc - Parâmetro subcontratado a laboratório com o método acreditado; S - Parâmetro subcontratado a laboratório com o método não-acreditado; * - Determinação analítica realizada no laboratório

Nota 1: Certificado de Acreditação em anexo (Anexo III)

4.3.2 - Equipamentos e materiais utilizados nas medições

A - Equipamentos

Nome	Marca	Modelo	Cód. Interno Número de Série
	T	Isostack	DM 063
Sistema automático de amostragem isocinético (a)	Tecora	Basic	843735PT DM 101
Analisador de Gases	Horiba	PG250	4338155033
			DM 078
Analisador de COV's	Ratfisch	RS 53-T	03/05/1994
			DM 032
Balança	Kern	440	W994468
			DM 033
Balança	Precisa	292SCS	74231
			DM 045
Estufa	Binder	HD-53	9010 0078

Legenda: (a) - Detalhes do sistema automático de medição isocinético apresentados na tabela seguinte:

Tubo de Pitot Bocal T (diâmetro em mm)		Transdutor Pressão diferencial	Transdutor Pressão absoluta	Termopar interno	Termopar externo
Tipo S					
Número Série 1266	12	Isostack Basic	Isostack Basic	Pt 100 - Classe B	Tipo K

B - Materiais

Nome	Lote/N.º série	Certificado de Calibração
Filtro (Amostra) (b)	973267.5	<u>-</u>
Filtro (Branco) (b)	973267.5	-
Acetona	24.107803	-
Gás de referência - O ₂	EHP7995	717403
Gás de referência - NO	EF8TF7H	717406
Gás de referência - NO ₂	EHWUWP7	717407
Gás de Referência – Propano	6203400221072	103000309608/1

Legenda: (b) - foram utilizados filtros de fibra de quartzo, planos, com diâmetro de 47 mm e eficiência superior a 99,5%

Ensaios

Nota: Certificados de Calibração em anexo (Anexo IV)

5 - Descrição sumária da instalação abrangida

Fonte Emissora	N.º de Cadastro/ Código	Combustível (se aplicável)	Capacidade nominal	Equipamentos de redução ou tratamento de emissões	Horário e tipo de funcionamento
FF1 - Caldeira Ambitermo		Gás Natural	4100kWh	Não existem	Intermitente

Nota: Planta das Instalações em anexo (Anexo V)

6 - Condições relevantes de operação

Fonte Emissora	Capacidade Utilizada	Matérias-Primas	Outras
			A Caldeira destina-se à
FF1 - Caldeira Ambitermo	90%		produção de vapor para a
			produção

Nota: Os dados dizem respeito ao período de realização dos ensaios

7 - Caracterização do local de amostragem

7.1 - Características da conduta

	Valor	Unidades
Forma	Circular	-
Altura*	12,5	m
Diâmetro	0,62	m
Comprimento do lado maior		m
Comprimento do lado menor		m
Área	0,302	m²

Legenda: * dados fornecidos pelo operador

7.2 - Localização da amostragem

Pontos e linhas de amostragem			
Número de linhas usado	2		
Número de pontos por linha	2		
Orientação da conduta	Vertical		

MODLAB266-EG/03 - 16/10/20

7.3 - Validação da localização do plano de amostragem

Característica da corrente gasosa	Valor	Unidade	Requisito	Avaliação	Norma
Pressão diferencial mínima (ΔPmin)	6,0	Pa	≥5	Cumpre	EN 15259:2007
Velocidade local mínima (vmin)	2,8	m/s	-	-	-
Velocidade local máxima (vMax)	4,1	m/s	-	-	-
Razão entre vM e vm (vM/vm)	1,5	-	< 3:1	Cumpre	EN 15259:2007
Velocidade média (vmed)	3,6	m/s	-	-	-
Ângulo de escoamento relativamente ao eixo da conduta	< 15	ō	< 15	Cumpre	EN 15259:2007
Fluxo local negativo	Inexistente	-	-	Cumpre	EN 15259:2007

8 - Condições relevantes de escoamento

Parâmetro	Unidades	Resultado	U (±)
Humidade	%	10	1
Velocidade	m/s	4,2	0,7
Caudal			
Nas condições reais	m³/h	4577	274
Nas condições PTN - base húmida	Nm³/h	3617	239
Nas condições PTN - base seca	Nm³/h	3256	215
Temperatura do gás	K	345,6	2,8
Temperatura ambiente	K	291,3	1,5
Pressão do gás na conduta	kPa	101,3	2,4
Pressão atmosférica	kPa	101,3	0,3
Massa Molecular (massa molar do gás)	kg/mol	0,028	1,0E-05
Densidade do gás	Kg/m³	0,99	0,01
Concentração de O₂	%	15,3	0,7
Concentração de CO ₂ *	%	3,2	

Legenda: Condições PTN - Condições normais de pressão e temperatura - as condições referidas à temperatura de 273,15 K e à pressão de 101,3 kPa, conforme definido no DL 78/2004 de 3 de abril; * - Valor calculado

9 - Apresentação de resultados

9.1 - Resultados das medições

Parâmetro	Unidades	Resultado medido	Incerteza expandida (±)
Partículas totais	mg/Nm³	8	2
NO _x (Óxidos de Azoto expressos em NO ₂)	mg/Nm³	27	5
COV's (Compostos orgânicos voláteis)	mg/Nm³	53	2

Nota: <XX – Abaixo do limite de Deteção

Nota: a "Incerteza Expandida" foi calculada a partir da incerteza da medição multiplicada pelo fator de cobertura de k =2 que, para uma distribuição Normal, corresponde a um intervalo de confiança de aproximadamente 95%

10 - Avaliação dos resultados

10.1 - Comparação dos resultados com os valores legais aplicáveis

	Conce	ntração (mg	/Nm³)	Caudal mássico (kg/h)		
Parâmetro	Resultado obtido	Resultado corrigido (3% O ₂)	VLE (1)	Resultado obtido	Limiar mínimo (2)	Limiar máximo (2)
Partículas totais	8	25	50	0,026	0,5	5
NO _x (Óxidos de Azoto expressos em NO ₂)	27	85	300	0,088	2	30
COV's (Compostos orgânicos voláteis)	53	167	200	0,173	2	30

Nota: (1) - 1º Aditamento à LA nº422/0.0/2011 de 1 de dezembro de 2015; (2) - Portaria 80/2006 de 23 de janeiro

10.2 - Conclusões

Relativamente aos valores limite dos caudais mássicos, definidos na Portaria 80/2006 de 23 de janeiro, verifica-se que os parâmetros se encontram abaixo do limiar mássico mínimo. As concentrações obtidas cumprem os VLE aplicáveis.

11 - Observações

11.1 - Desvios

Desvio relativo aos	Desvio relativo aos	lustificação	Concoguância
parâmetros	ensaios	Justificação	Consequência

não aplicável

11.2 - Condições específicas

Plano de monitorização	VLE específico	Isenção	Outra

não aplicável

L0311 Ensaios

11.3 - Outras

- a) Os resultados apresentados neste relatório referem-se exclusivamente aos parâmetros analisados e ao respetivo período de medição.
- b) As incertezas apresentadas foram estimadas de acordo com a metodologia apresentada no ISO GUM.

Anexo I - Cálculos

A) Velocidade do gás Vmed = V1 + V2 + + Vn n Vmed = V1 + V2 + + Vn n Vmed = V1 + V2 + + Vn n Vmed = V1 + V2 + + Vn n Vmed = V1 + V2 + + Vn n Vmed = Velocidade média do gás na conduta (m/s) n = n.º de pontos de médição na secção da conduta Vi = Velocidade local - velocidade no ponto i da secção da conduta (m/s) X = fator de calibração do tubo de Pilot Agú - pressão diferencial no ponto i (Pra) Pe = Mx PC R x Tc Pe = messa diferencial no ponto i (Pra) Pe = pressão diferencial no ponto i (Pra) Pe = pressão diferencial no ponto i (Pra) Pe = persaño abentuta na secção da conduta (Pra) Tc = Temperatura do gás na conduta (kg/m²) A = a x b condutas circulares A = a x b condutas circulares A = a x b condutas retangulares Qven = Qven, Pc x 273,15 101,3 x Tc Qven = Cuucial do gás nas condições padrão de pressão e temperatura, em base húmida (Kg/s) Tc = Temperatura do gás nas conduta (KPa) Te = Temperatura do gás nas conduta (KPa) Tc = Temperatura do gás na		Allexo I - Calculos							
Vmed =		Fórmı	ulas de cálculo	Definições/ legenda					
Normal	A) Velocid	ade do gás							
Normal	Vmed =	v1 + v2 + + vn		Vmed = velocidade média do gás na conduta (m/s)					
vi = V × √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √		n		• • • • •					
R = fator de calibração do tubo de Pitot Api- pressão diferencial no ponto (Pa)		·							
Api - pressão diferencial no ponto i (Pa)	Vİ =	$K \times \sqrt{\frac{2 \times \Delta p_1}{\rho}}$		vi = velocidade local - velocidade no ponto i da secção da conduta (m/s)					
P = Mx PC R x Tc R x Tc R = constante dos gases ideais (J/K mol) Pc = pressão absoluta na secção da conduta (Pa) Tc - Temperatura do gás na conduta (K) M = nassa molar do gás em base húmida (kg/mol) Φ - fração volúmica B) Caudal volumétrico Qv.w = V _{med} X A Qv.w = caudal do gás nas condições de pressão e temperatura da conduta (Ms) A = π x d ² Condutas circulares A = π x d ² Condutas circulares A = a x b Condutas retangulares A = a a x b Condutas retangulares A = δ - condut				K = fator de calibração do tubo de Pitot					
R x Tc R = constante dos gases ideais (J/K mol) Pc = pressão absoluta na secção da conduta (Pa) Tc = Temperatura do gás na conduta (K) M = 10°x(32x\$\phi_2\cdot +44x\$\phi_CO_2\cdot +18x\$\phi_1\cdot +28x(100\cdot +\cdot +\cdot -\cdot +\cdot +\cdot -\cdot +\cdot +\cdot -\cdot +\cdot -\cdot +\cdot -\cdot +\cdot -\cdot -\cdot +\cdot -\cdot -\cdot +\cdot -\cdot -\cdot -\cdot +\cdot -\cdot -\cdo -\cdo -\cdot -\cdot -\cdo -\cdot -\cdot -\cdot -\cdot -\cdot -\cdot -\cdot -\cdo -\cdo -\cdot -\cdo -\cdo -\cdo -\cdo -\cdot -\cdo				Δpi - pressão diferencial no ponto i (Pa)					
R x Tc R = constante dos gases ideais (J/K mol) Pc = pressão absoluta na secção da conduta (Pa) Tc = Temperatura do gás na conduta (K) M = 10°x(32x\$\phi_2\cdot +44x\$\phi_CO_2\cdot +18x\$\phi_1\cdot +28x(100\cdot +\cdot +\cdot -\cdot +\cdot +\cdot -\cdot +\cdot +\cdot -\cdot +\cdot -\cdot +\cdot -\cdot +\cdot -\cdot -\cdot +\cdot -\cdot -\cdot +\cdot -\cdot -\cdot -\cdot +\cdot -\cdot -\cdo -\cdo -\cdot -\cdot -\cdo -\cdot -\cdot -\cdot -\cdot -\cdot -\cdot -\cdot -\cdo -\cdo -\cdot -\cdo -\cdo -\cdo -\cdo -\cdot -\cdo	ρ =	M x Pc		o = densidade do gás na conduta (kg/m³)					
Pc = pressão absoluta na secção da conduta (Pa) Tc = Temperatura do gás na conduta (R) M = 10 °x(32x¢O ₂ +44x¢CO ₂ +18xфH ₂ O+28x(100-¢O ₂ -¢CO ₂ -¢H ₂ O) M = massa molar do gás em base húmida (kg/mol)	·	·							
Tc = Temperatura do gás na conduta (K) M = nassa molar do gás em base húmida (kg/mol) φ - fração volumica B) Caudal volumétrico qv, w = V _{med} x A Condutas circulares A = π x d² condutas circulares A = a x b condutas retangulares Qv, w = v _{med} x A Condutas retangulares A = a x b condutas retangulares Qv, w = caudal do gás nas condições de pressão e temperatura da conduta, em base húmida (m²/s) A = a x b condutas circulares A = a x b condutas retangulares A = a x b condutas retangulares Qv, w = v _{med} x evolocidade média do gás na conduta (m/s) A = a x b condutas retangulares A = a conduta (m²/s) Qv _{pin, w} = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m²/s) Tc = Temperatura do gás na conduta (kPa) Tc = Temperatura do gás nas condições padrão de pressão e temperatura, em base secia (da conduta (kPa) Tc = Temperatura do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H ₂ O] = m/V _{g,pin} H ₂ O ₃ = tor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,pin} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida V mol,pin = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m²)									
M = 10 ⁵ x(32xφO ₂ +44xφCO ₂ +18xφH ₂ O+28x(100-φO ₂ -φCO ₂ -φH ₂ O)) M = massa molar do gás em base húmida (kg/mol) φ - fração volúmica B) Caudal volumétrico qv.w = V _{med} x A									
B) Caudal volumétrico qv,w = caudal do gás nas condições de pressão e temperatura da conduta, em base húmida (m³/s) V med = velocidade média do gás na conduta (m/s) A = π x d² condutas circulares A = a x b condutas retangulares qv,w = PC x 273.15 101,3 x Tc qv,w = PC x 273.15 101,3 x Tc qv,w = PC x 273.15 100 - 6H-O) qvpm,w = qv,w x PC x 273.15 101,3 x Tc qvpm,d = qv,w x PC x 273.15 100 - 6H-O) qvpm,w x (100 - 6H-O) qvpm,d = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) PC = pressão absoluta na secção da conduta (kPa) TC = Temperatura do gás na condições padrão de pressão e temperatura, em base seca (m³/s) TC = Temperatura do gás na conduta (kPa) TC = Temperatura do gás na condições padrão de pressão e temperatura, em base seca (m³/s) TC = Temperatura do gás na conduta (kPa) TC = Temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições padrão de pressão e temperatura do gás na condições p	M =	10⁻⁵x[32x¢O₂+44x¢C	CO ₂ +18xφH ₂ O+28x(100-φO ₂ -φCO ₂ -φH ₂ O)]	, ,					
B) Caudal volumétrico qv_w = V_{med} x A qv_w = caudal do gás nas condições de pressão e temperatura da conduta, em base húmida (m³s) V_mad = velocidade média do gás na conduta (m³s) A = \(\frac{\pi}{4} \) x \(\frac{\pi^2}{4} \) condutas circulares A = \(\frac{\pi}{4} \) x \(\frac{\pi^2}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) x \(\frac{\pi^2}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) x \(\frac{\pi}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) conduta do gás na conduta (m) A = \(\frac{\pi}{4} \) x \(\frac{\pi}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) x \(\frac{\pi}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) x \(\frac{\pi}{4} \) condutas retangulares A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da conduta (m) A = \(\frac{\pi}{4} \) conduta (and to a secção da c		1 1 1 2							
qv,w = caudal do gás nas condições de pressão e temperatura da conduta, em base húmida (m³/s) A = π x d²/4 condutas circulares A = área interna da conduta ma secção da conduta (m/s) A = a x b condutas retangulares qv,w,w = caudal do gás nas condições padrão de medição (m²) d e diametro interno da secção da conduta (m) a e b - comprimento dos lados da secção da conduta (m) qvpm,w = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Tc = Temperatura do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H₂O] = m/Vg,ptn [H₂O] = m/Vg,ptn [H₂O] = qvpm,w x (100 - ΦH₂O) 100 1									
qv,w = V _{med} xA conduta, em base húmida (m³/s) V _{med} = velocidade média do gás na conduta (m/s) A = π x d²/4 condutas circulares A = área interna da conduta na secção de medição (m²) d = diametro interno da secção da conduta (m) A = a x b condutas retangulares a e b - comprimento dos lados da secção da conduta (m) qvpm,w = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás na conduta (kPa) Tc = Temperatura do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H₂O] = m/V _{g,pm} [H₂O] = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,pm} = volume de gás seco medido na conduta, corrigido para as condições ptn. H₂O]% = m x V _{mod,pm} M (H₂O) = teor de vapor de água em % volumétrica, em base húmida V _{mod,pm} = volume molar nas condições ptn (0.0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condições reais de pressão, temperatura e humidade (m³)	B) Caudal	volumétrico							
A = a x b condutas circulares A = a x b condutas retangulares A = a x b condutas retangulares a e b - comprimento dos lados da secção da conduta (m) A = a x b condutas retangulares a e b - comprimento dos lados da secção da conduta (m) qv _{ptn,w} = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) qv _{ptn,d} = qv _{,w} × Pc x 273.15 / 101,3 x Tc qv _{ptn,d} = caudal do gás nas conduta (kPa) Tc = Temperatura do gás nas conduta (kPa) Tc = Temperatura do gás nas conduta (k) qv _{ptn,d} = caudal do gás nas condições padrão de pressão e temperatura, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) Vg _{p,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O] = teor de vapor de água em % volumétrica, em base húmida Vmol,ptn = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m²)	q _{V,w} =	V _{med} x A							
d = diametro interno da secção da conduta (m) a e b - comprimento dos lados da secção da conduta (m) qvptn,w = qv,w x Pc x 273.15 / 101,3 x Tc qvptn,w = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás nas conduta (kPa) Tc = Temperatura do gás nas conduta (K) qvptn,d = caudal do gás nas conduta (kPa) Tc = Temperatura, em base seca (m³/s) C) Humidade [H ₂ O] = m/V _{g,ptn} [H ₂ O] = m/V _{g,ptn} [H ₂ O] = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida M [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida Vmol,ptn = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m²)				V med = velocidade média do gás na conduta (m/s)					
d = diametro interno da secção da conduta (m) a e b - comprimento dos lados da secção da conduta (m) qvptn,w = qv,w x Pc x 273.15 / 101,3 x Tc qvptn,w = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás nas conduta (kPa) Tc = Temperatura do gás nas conduta (K) qvptn,d = caudal do gás nas conduta (kPa) Tc = Temperatura, em base seca (m³/s) C) Humidade [H ₂ O] = m/V _{g,ptn} [H ₂ O] = m/V _{g,ptn} [H ₂ O] = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida M [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida Vmol,ptn = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m²)	A =	π x <u>d²</u>	condutas circulares	A = área interna da conduta na secção de medição (m²)					
qvptn,w = qv,w x Pc x 273,15 101,3 x Tc qvptn,w = caudal do gás nas condições padrão de pressão e temperatura, em base húmida (m³/s) Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás nas condições padrão de pressão e temperatura do gás nas conduta (kVa) Tc = Temperatura do gás nas conduta (kVa) Qvptn,d = caudal do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H2O] =m Vg,ptn		4		d = diametro interno da secção da conduta (m)					
Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás na conduta (kPa) Tc = Temperatura do gás na conduta (k) qvptn,d = caudal do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H ₂ O] = m/V _{g,ptn} H ₂ O] = m/V _{g,ptn} M/m x V _{mol,ptn} M/m M/m x V _{mol,ptn} V _{mol,ptn} = volume de gás amostrado nas condições patrio de pressão e temperatura, em base seca (g/m³) H ₂ O]% = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V _{g-V1} = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)	A =	axb	condutas retangulares	a e b - comprimento dos lados da secção da conduta (m)					
Pc = pressão absoluta na secção da conduta (kPa) Tc = Temperatura do gás na conduta (kPa) Tc = Temperatura do gás na conduta (k) qvptn,d = caudal do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H ₂ O] = m/V _{g,ptn} H ₂ O] = m/V _{g,ptn} M/m x V _{mol,ptn} M/m M/m x V _{mol,ptn} V _{mol,ptn} = volume de gás amostrado nas condições patrio de pressão e temperatura, em base seca (g/m³) H ₂ O]% = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V _{g-V1} = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)	q ∨ptn,w =	qv,w x <u>Pc x 273,15</u> 101.3 x Tc							
qvptn,d = qv,w x Pc x 273.15 x (100 - ΦH₂O) = qvptn,w x (100 - ΦH₂O) qvptn,d = caudal do gás nas condições padrão de pressão e temperatura, em base seca (m³/s) C) Humidade [H₂O] =m / Vg,ptn		,		Pc = pressão absoluta na secção da conduta (kPa)					
C) Humidade [H ₂ O] = _m / V _{g,ptn}				Tc = Temperatura do gás na conduta (K)					
[H ₂ O] = m/V _{g,ptn} [H ₂ O] = teor de vapor de água, em base seca (g/m³) m = massa de água recolhida na unidade de vapor (g) V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O]% = M/M [H ₂ O]% = teor de vapor de água em % volumétrica, em base húmida m x V _{mol,ptn} + V _{g,ptn} V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V _{g,ptn} = (V ₂ - V ₁) x T _{ptn} xP _g R + x T	q ∨ptn,d =	qv,w x <u>Pc x 273,15</u> x 101,3 x Tc	$\frac{(100 - \phi H_2 O)}{100} = q_{Vptn,w} \times \frac{(100 - \phi H_2 O)}{100}$						
Vg,ptn m = massa de água recolhida na unidade de vapor (g) Vg,ptn = volume de gás seco medido na conduta, corrigido para as condições ptn. [H₂0]% = M	C) Humida	ade							
Vg,ptn m = massa de água recolhida na unidade de vapor (g) Vg,ptn = volume de gás seco medido na conduta, corrigido para as condições ptn. [H₂0]% = M	[H ₂ O] =	m		[H2O] = teor de vapor de água, em base seca (g/m³)					
V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as condições ptn. [H ₂ O]% = M	. 2-3								
[H ₂ O]% = M [H2O]% = teor de vapor de água em % volumétrica, em base húmida m x V _{mol,ptn} + V _{g,ptn} M V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)				V _{g,ptn} = volume de gás seco medido na conduta, corrigido para as					
<u>m x V_{mol,ptn} + V_{g,ptn}</u> V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol) M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)		$\underline{m} \ x \ V_{mol,ptn}$							
M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)	[H ₂ O]% =		-	[H2O]% = teor de vapor de água em % volumétrica, em base húmida					
M = massa molar da água (18,02 g/mol) V2 - V1 = volume de gás amostrado nas condiçõs reais de pressão, temperatura e humidade (m³)		m x V _{mol,ptn} + V _{g,ptn}		V _{mol,ptn} = volume molar nas condições ptn (0,0224 m³/mol)					
V _{g,ptn} = (V2 - V1) x T _{ptn} xPq temperatura e humidade (m³)		IVI		M = massa molar da água (18,02 g/mol)					
D. vT	Va.ntn	(V2 - V1) v Tota xPa							
	• g,ptii =			Pg = Pressão absoluta no contador de gás (kPa)					

 $V_{g,ptn} = (V2 - V1) \times Pg \times 273,15$ 101,3 x Tg Tg = Temperatura média do gás amostrado no contador de gás (K)

Pptn = Pressão nas condições normais P e T (101,3 kPa)

Tptn = Temperatura nas condições normais P e T (273,15 K)

E) Concentração de Poluentes

E.1) Partículas

$$[PTS] = \frac{mt}{Vg}$$

$$mt = mf + mI$$

mt = massa total de partículas (mg)

Vg = volume de gás seco medido na conduta (m³) mf = massa de partículas recolhida no filtro (mg)

ml = massa de partículas recolhida a montante do filtro (lavagem) (mg)

E.2) Outros Poluentes

[poluente]

[poluente] = Concentração do poluente (mg/Nm³)

mt = massa de poluente (mg)

 $V_{g,ptn}$ = volume de gás seco medido na conduta, corrigido para as condições ptn.

F) Cauldal mássico do poluente

$$q_{poluente} = \underline{[poluente] x q_{Vptn,d}} x 3600$$

$$1x10^{-6}$$

q_{poluente} = caudal de poluente no efluente gasoso nas condições padrão de pressão e temperatura, em base seca (kg/h)

[poluente] = Concentração do poluente (mg/Nm³)

 $q_{Vptn,d}$ = caudal do gás nas condições padrão de pressão e temperatura, em base seca (m³/s)

G) Concentração de poluentes em relação ao teor de O2 de referência

$$fc = \frac{21 - O_{2,ref}}{21 - O_{2,m}}$$

fc = fator de correção

O_{2,ref} = Concentração de referência de oxigénio, em percentagem volúmica de gás seco nas condições normais de P e T

 $O_{2,m}$ = Concentração de oxigénio, em percentagem volúmica de gás seco, medido na conduta

H) Taxa de Isocinetismo

$$I = \frac{V_N}{V_a} \times 100$$

 V_N = velocidade do gás no bocal de amostragem (m/s)

V_a = velocidade do gás na conduta

(m/s)

$$DI = \underbrace{V_{N-} Va}_{V} \times 100$$

$$V_a$$

$$V_N = \underbrace{q_{Vptn,w}}_{A}$$

Anexo II - Controlo da qualidade

A) Resultados do controlo de qualidade

Parâmetro	ltem de avaliação	Valor inicial	Valor final	Critério	Avaliação
Velocidade	Teste de fugas - Linha de pressão (Pa)	750	750	Sem variação	Cumpre
Humidade	Teste de fugas - Linha de	0	0	20/	Cumpre
	amostragem (m ³)	0	0	2%	Cumpre
Partículas totais	Branco de campo (%)	1		10% Valor limite diário	Cumpre
	Taxa de Isocinetismo (%)	97,3		95% a 115%	Cumpre
0.	Ajuste do Zero	20,95	20,95	2%	Cumpre
O ₂	Ajuste do Span	17,1	17,1	2%	Cumpre
NO	Ajuste do Zero	0	0	2%	Cumpre
NO	Ajuste do Span	1183	1180	2%	Cumpre
NO	Ajuste do Zero	0	0	2%	Cumpre
NO ₂	Ajuste do Span	38	38	2%	Cumpre
000 %-	Ajuste do Zero	0	0	2%	Cumpre
COV's	Ajuste do Span	99,1	98,8	2%	Cumpre

B) Informação complementar

B.1) - Posição das Linhas e pontos de amostragem e perfis de velocidade e temperatura

Linha de amostragem						
Porta	Ponto	Distância à conduta (m)	Temperatura (K)	Pressão diferencial (Pa)	Velocidade (m/s)	
1	1	0,09	345,0	13,3	4,1	
1	2	0,51	343,0	12,7	4,0	
2	1	0,09	347,7	14,7	4,3	
2	2	0,51	346,5	15,5	4,4	

B.2) Resumo do ensaio "Partículas Totais"

		Duração	Volume	Odudai		assa recolhi	da (mg)	Concentração
Ensaio n.º	Data	(min)	amostrado (m³)	médio (m³/s)	Filtro	Lavagens	Total (medido)	Branco (mg/m³)
1	26/dez/17	32	0,3431	1,79E-04	1,6	1,1	2,7	1,6

MMLab – Laboratório de Medições da Manuel Martins – Serviços de Engenharia, Lda. SEDE: Rua José Carlos Afonso, Lt. 25 – Cruz d'Areia – 2410-049 Leiria / Tel:244 801 010 / Fax: 244 801 115 FILIAL: Avenida D. Nuno Álvares Pereira, nº114, Fr. F, loja 2, 2490-484 Ourém www.manuel-martins.pt/email: geral@manuel-martins.pt