

CALB

NEW SINES GIGA FACTORY

PROJETO DE EXECUÇÃO

PACK 06 – ESTAÇÃO DE

TRATAMENTO DE ÁGUAS RESIDUAIS

(ETAR)

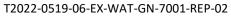
MEMÓRIA DESCRITIVA E

JUSTIFICATIVA E

Revisão 00

Lisboa,10 de novembro de 2023

REVISÃO	DATA	DESCRIÇÃO	Projetou	Verificou	Aprovou
00	11/08/2023	Primeira emissão	AMS	PLG	MMM
01	10/11/2023	Revisão conforme comentários APA	AMS	PLG	PLG
02	06/01/2023	Revisão conforme pedido de esclarecimentos extraordinário APA	AMS	PLG	PLG


CALB

NEW SINES GIGA FACTORY

PROJETO DE EXECUÇÃO PACK 06 – ESTAÇÃO DE TRATAMENTO DE ÁGUAS RESIDUAIS (ETAR) MEMÓRIA DESCRITIVA E JUSTIFICATIVA

ÍNDICE

1 9	GENERALIDADES	1
1.1	PROPÓSITO DO DOCUMENTO	1
1.2	DESCRIÇÃO DO PROJETO, CONDIÇÕES E CONSIDERAÇÕES	1
1.3	NORMAS, CÓDIGOS E DIRETRIZES	
1.4	ÂMBITO E APLICAÇÃO	
	·	
<u>2</u> <u>C</u>	DESCRIÇÃO DO SISTEMA	2
<u>3</u> <u>C</u>	DADOS DE BASE	6
3.1	CAUDAIS	F
	CARACTERÍSTICAS DE AFLUÊNCIA DE ÁGUAS RESIDUAIS BRUTAS E REQUIS	
	QUALIDADE	
4 F	PRÉ-DIMENSIONAMENTO HIDRÁULICO E SANITÁRIO DO ESQUEMA	DE
TRA	TAMENTO	10
4.1	EQUALIZAÇÃO E HOMOGENEIZAÇÃO DOS CAUDAIS AFLUENTES	10
4.2	PRÉ-TRATAMENTO	
4.2.1		
4.3		
4.3.1		
4.3.2		
4.3.3	·	
4.3.4		
4.3.5	•	
4.3.6	,	
4.4	PRODUÇÃO DE LAMAS	
4.5	ESPESSAMENTO GRAVÍTICO DAS LAMAS MISTAS	
4.6	DESIDRATAÇÃO MECÂNICA DAS LAMAS ESPESSADAS	
4.7	RESUMO	28
5 (CONSIDERAÇÕES FINAIS	30

ÍNDICE DE TABELAS

TABELA 1.1 – ÁGUAS RESIDUAIS SUJEITAS A TRATAMENTO NA ETAR2
TABELA 3.1 – CAUDAIS DOMÉSTICOS E INDUSTRIAIS6
TABELA 3.2 – CLASSIFICAÇÃO DE ÁGUAS RESIDUAIS INDUSTRIAIS (REGULAMENTO DE RECOLHA E TRATAMENTO DE ÁGUA RESIDUAL INDUSTRIAL DO SISTEMA DE SANTO ANDRÉ (RARISA), 2007)6
TABELA 3.3 – VLE PARA AS ÁGUAS RESIDUAIS INDUSTRIAIS (RARISA E CARACTERIZAÇÃO DOS DIFERENTES EFLUENTES)7
TABELA 3.4 – CAPITAÇÕES DE CARGA POLUENTE (ÁGUAS RESIDUAIS DOMÉSTICAS)8
TABELA 3.5 – POPULAÇÕES EQUIVALENTES9
TABELA 4.1 – TANQUES E EQUALIZAÇÃO E HOMOGENEIZAÇÃO10
TABELA 4.2 – CÂMARA DE MISTURA RÁPIDA (COAGULAÇÃO)12
TABELA 4.3 - CÂMARA DE MISTURA LENTA (FLOCULAÇÃO)12
TABELA 4.4 - DECANTAÇÃO13
TABELA 4.5 – REATOR COMPÓSITO DE HIDRÓLISE ANAERÓBIA14
TABELA 4.6 -DIMENSIONAMENTO DO TRATAMENTO BIOLÓGICO18
TABELA 4.7 – PRODUÇÃO E LAMAS MISTAS23
TABELA 4.8 – DIMENSIONAMENTO DO ESPESSAMENTO GRAVÍTICO DAS LAMAS MISTAS PRODUZIDAS NA ETAR24
TABELA 4.9 – DIMENSIONAMENTO DA DESIDRATAÇÃO MECÂNICA DE LAMAS25
TABELA 4.10 — RESUMO DA QUALIDADE DAS ÁGUAS RESIDUAIS (BRUTAS E APÓS DILUIÇÃO E TRATAMENTO)28

ÍNDICE DE FIGURAS	
FIGURA 2.1 – ESQUEMA DE TRATAMENTO DA ETAR	,

CALB

NEW SINES GIGA FACTORY

PROJETO DE EXECUÇÃO PACK 06 – ESTAÇÃO DE TRATAMENTO DE ÁGUAS RESIDUAIS (ETAR) MEMÓRIA DESCRITIVA E JUSTIFICATIVA

1 GENERALIDADES

1.1 PROPÓSITO DO DOCUMENTO

O objetivo do presente documento é fornecer a descrição, princípios, assunções, lógica, critérios e considerações usadas para cálculos e decisões necessárias durante o projeto - isso em relação à disciplina identificada neste documento.

1.2 DESCRIÇÃO DO PROJETO, CONDIÇÕES E CONSIDERAÇÕES

Para a descrição do projeto, considerações gerais e condições comuns (por exemplo, condições ambientais e locais), consultar o seguinte documento em sua versão mais recente:

T2022-0519-00-EX-CRD-GN-0001-REP

1.3 NORMAS, CÓDIGOS E DIRETRIZES

O desenvolvimento do presente projeto foi efetuado de acordo com as versões mais recentes da legislação, vigentes à data da sua elaboração, nomeadamente:

- Regulamento de recolha e tratamento de água residual industrial do Sistema de Santo André (RARISA), 2007.
- Valores de emissão associados às melhores técnicas disponíveis (VEA-MTD) aplicáveis ao efluente industrial;
- Normas ATV-DVWK-A 131E de Maio de 2000;
- Condições dadas por outras disciplinas, nomeadamente o tratamento de águas residuais.

1.4 ÂMBITO E APLICAÇÃO

As águas residuais produzidas na fábrica dividem-se em diferentes categorias, tendo em conta a sua origem, pelo que os efluentes sujeitos a tratamento na Estação de

Tratamento de Águas Residuais (ETAR) podem ser categorizados em águas residuais domésticas e águas residuais de processo.

Tabela 1.1 – Águas residuais sujeitas a tratamento na ETAR

Sistema	Origem principal	Destino final
Água residual doméstica	Descargas sanitárias e urinóis, lavatórios, pias, chuveiros, ralos de pavimento e cozinhas (após o separador de gorduras)	Sistema público da AdSA, após pré-tratamento na ETAR
Água residual de processo	 Águas residuais produzidas durante as operações de processo ou equipamentos, equipamentos de segurança e drenagem de combate a incêndio – águas residuais industriais Condensado de NMP 	Sistema público da AdSA, após pré-tratamento na ETAR

Após a etapa de tratamento, estes efluentes serão descarregados no sistema público da Águas de Santo André (AdSA) e consequentemente encaminhados para a ETAR de Ribeira de Moinhos.

Os valores limite de emissão (VLE) dos parâmetros de descarga são definidos no Regulamento de Recolha e Tratamento de Água Residual Industrial do Sistema de Santo André — RARISA, assim como a Tarifa a aplicar às descargas de água residual provenientes da fábrica, com base na atribuição de uma classe de qualidade.

2 DESCRIÇÃO DO SISTEMA

A ETAR será implantada dentro do Edifício T1 e terá capacidade para servir uma população total de 19 900 habitantes equivalentes (HE).

As águas residuais que serão encaminhadas para a ETAR podem ser classificadas em águas residuais domésticas (370,9 m³/dia) e águas residuais de processo (192,7 m³/dia). Este último grupo engloba o condensado do composto orgânico NMP (N-Metilpirrolidona), que corresponde a um caudal médio diário de 90 m³/dia, e as restantes águas residuais industriais (102,7 m³/dia).

O esquema de tratamento preconizado desenvolve-se segundo uma única linha de tratamento e baseia-se num pré-tratamento da água residual de processo (tratamento físico-químico e biológico anaeróbio), seguido de um sistema de tratamento biológico, a aplicar ao efluente de processo pré-tratado e ao efluente doméstico bruto, por lamas ativadas de biomassa dispersa do tipo MBR (Membrane BioReactor), com regime de carga em arejamento prolongado e com remoção biológica de azoto e fósforo.

De um modo geral, a solução de tratamento escolhida para a ETAR da Fábrica da CALB inclui as seguintes operações unitárias abaixo listadas e apresentadas na Figura 2.1 (ver desenhos T2022-0519-06-EX-WAT-GN-7502-DWG-00 e T2022-0519-06-EX-WAT-GN-7503-DWG-00).

Fase Líquida

- Homogeneização do caudal industrial afluente ao pré-tratamento físico químico;
- Primeira etapa de coagulação e floculação do efluente industrial;
- Decantação do efluente industrial após coagulação e floculação;
- Segunda etapa de coagulação e floculação do efluente industrial;
- Decantação do efluente industrial após segunda etapa de coagulação e floculação;
- Homogeneização do caudal industrial e do condensado de NMP afluente ao pré-tratamento anaeróbio,
- Pré-tratamento anaeróbio do efluente industrial e do condensado de NMP por meio de um reator compósito de hidrólise anaeróbia;
- Homogeneização do caudal industrial e do condensado de NMP com o afluente doméstico,
- Tratamento biológico por lamas ativadas de biomassa dispersa do tipo MBR com regime de carga em arejamento prolongado e incluindo remoção biológica de azoto e fósforo(reatores anaeróbio, anóxico, aeróbio e tanque de membranas);

Fase Sólida

- Extração das lamas químicas a partir dos decantadores;
- Elevação de lamas em excesso a partir dos reatores aeróbios;
- Espessamento de lamas mistas (químicas e biológicas) num espessador gravítico;
- Desidratação mecânica de lamas numa centrífuga;
- Elevação e armazenamento de lamas desidratadas.

Após tratamento, as águas residuais domésticas e industriais serão descarregadas no Sistema de Santo André e encaminhadas para a ETAR de Ribeira dos Moinhos, onde passarão por uma segunda etapa de tratamento. Esta ETAR foi concebida para tratar as águas residuais industriais da ZILS em conjunto com as águas residuais urbanas de Sines, da Cidade de Vila Nova de Santo André e Santiago do Cacém, tendo sido executada para um caudal nominal de 0,5 m³/s e para uma população de 360 000 habitantes equivalentes.

Os principais motivos que conduziram à solução de tratamento escolhida para a ETAR da fábrica da CALB foram os que se expõem de seguida:

- Apesar das águas residuais domésticas representarem uma carga poluente significativamente mais baixa do que as águas residuais de processo, optou-se por tratar ambos os caudais em simultâneo na mesma linha de tratamento, permitindo que a mistura com o efluente doméstico não só dilua as cargas presentes no efluente industrial, como aumente a sua biodegradabilidade, contribuindo assim para uma otimização do tratamento biológico;
- O pré-tratamento físico-químico, constituído pela etapa de coagulação e floculação, tem como finalidade remover uma parte da carga de SST, CQO e metais pesados das águas residuais industriais, permitindo diminuir a exigência do tratamento biológico a jusante;

- O tratamento anaeróbio por meio de um reator compósito de hidrólise anaeróbia, aplicado à mistura de efluente industrial pré-tratado e de condensado de NMP, tem como função decompor a matéria orgânica de grande dimensão celular (característica do NMP) em matéria orgânica de pequena dimensão, aumentando assim a biodegradabilidade do composto;
- A tecnologia MBR permite a obtenção de um efluente final tratado que cumpre os requisitos do regulamento das Águas de Santo André logo à saída do reator biológico, excluindo a necessidade de qualquer etapa de tratamento adicional.

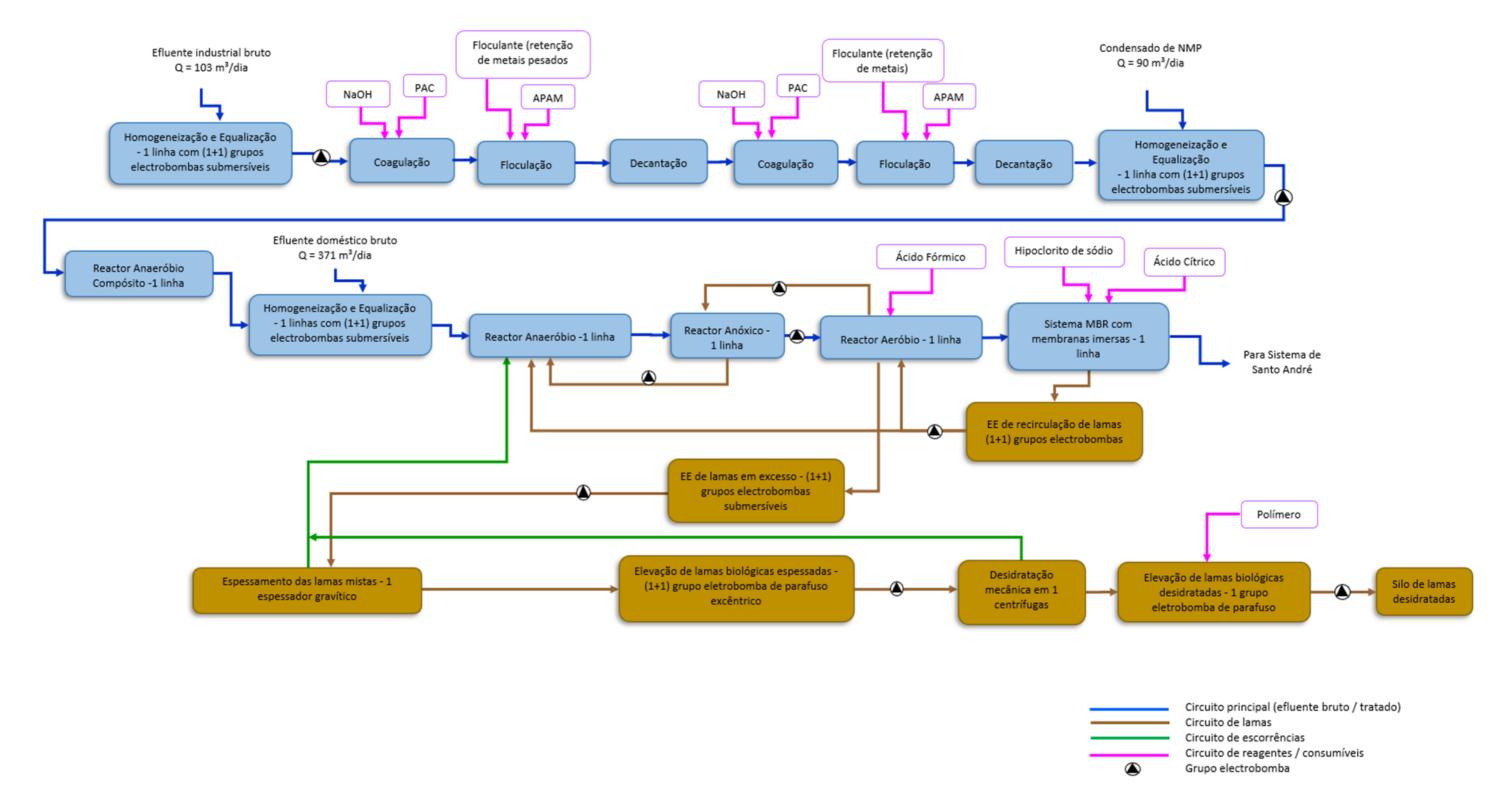


Figura 2.1 – Esquema de tratamento da ETAR

3 DADOS DE BASE

3.1 CAUDAIS

No quadro seguinte apresentam-se os diferentes tipos de efluentes produzidos na fábrica. Os caudais domésticos e industriais totais são 370,9 m³/dia e 192,7 m³/dia, respetivamente, sendo que 90 m³/dia do caudal industrial corresponde ao condensado de NMP. A totalidade dos caudais será sujeita a tratamento na ETAR e posteriormente descarregados no Sistema de Santo André.

Tabela 3.1 – Caudais domésticos e industriais

Sistema	Origem	Caudal médio (m³/d)
	Águas de lavagem (com metais pesados)	10,32
Água residual industrial	Águas de lavagem (sem metais pesados)	25,24
	Outros	66,93
Condensado de NMP		90,00
Subtotal		192,68
	Efluente doméstico (área não laboral)	292,7
Água residual doméstica	Edifício dos Colaboradores	36,0
	Refeitório	42,2
Subtotal		370,89
Total		563,57

3.2 CARACTERÍSTICAS DE AFLUÊNCIA DE ÁGUAS RESIDUAIS BRUTAS E REQUISITOS DE QUALIDADE

De acordo com o RARISA, a tarifa de descarga no Sistema das Águas de Santo André é determinada pela classe de qualidade das águas residuais descarregadas. A atribuição desta classe é feita com base em seis parâmetros físico-químicos, como se apresenta na tabela seguinte. Considerando as características dos diferentes efluentes brutos e a linha de tratamento definida para a ETAR, estabeleceu-se como objetivo atingir uma água residual tratada compatível com a Classe II.

Tabela 3.2 – Classificação de águas residuais industriais (Regulamento de recolha e tratamento de água residual industrial do Sistema de Santo André (RARISA), 2007)

Parâmetro	Unidade	Classe I	Classe II	Classe III	Classe IV	Classe V
рН	Escala Sorensen	6≤pH≤9	6≤pH≤9	6≤pH≤9	6≤pH≤9	4.5≤pH≤10
CQO	mg/L	<150	≥150 e <300	≥300 e <600	≥600 e <1000	≥1000 e <2000
SST	mg/L	<100	≥100 e <200	≥200 e <300	≥300 e <500	≥500 e <1000
Óleos e Gorduras	mg/L	<5	≥5 e <20	≥20 e <35	≥35 e <50	≥50 e <100
Sulfuretos	mg/L	<2	≥2 e <4	≥4 e <7	≥7 e <10	≥10 e <20
Compostos fenólicos	mg/L	<5	≥5 e <10	≥10 e <15	≥15 e <20	≥20 e <40

Adicionalmente, o RARISA estabelece ainda que qualquer água residual descarregada no sistema não pode conter nenhuma das substâncias apresentadas na Tabela 3.3 em concentrações superiores aos VLE indicados.

Uma vez que a descarga do efluente tratado na ETAR da Fábrica se classifica como descarga indireta no meio recetor, deverão ainda ser cumpridos os valores de emissão associados às melhores técnicas disponíveis (VEA-MTD), para os parâmetros aplicáveis ao efluente industrial (nomeadamente o níquel, o zinco e o flúor, como se apresenta na tabela seguinte). Nos casos em que o RARISA e os VEA-MTD apresentam valores diferentes para o mesmo parâmetro, foi considerado o VEA-MTD para os objetivos de qualidade do efluente final tratado.

A tabela inclui também a caracterização das águas residuais domésticas, águas residuais industriais e condensado de NMP produzidas na fábrica e encaminhadas para a ETAR.

Adicionalmente, na tabela 4.10 apresenta-se um resumo dos VLE, VEA-MTD e qualidade dos diferentes efluentes brutos e tratados após cada etapa de tratamento, para cada um dos parâmetros a considerar.

Tabela 3.3 – VLE para as águas residuais industriais (RARISA e caracterização dos diferentes efluentes brutos)

Parâmetro	Unidade	VLE (RARISA)	VEA-MTD	Águas Residual Industrial ⁽¹⁾	Águas Residuais Domésticas	Condensado de NMP ⁽³⁾
Caudal	m³/dia	-	N.A	102,68	90,00	370,89
рН	Escala Sorensen	6 - 9	N.A	6 - 9	6 - 9	6 - 9
CQO	mg/L	2000	N.A	15 000,0	655,18	10 008,00
SST	mg/L	1000	N.A	27 000,00	436,79	17,18
Óleos e gorduras	mg/L	100	N.A	0,00	50,00	0,00
Sulfuretos	mg/L	20	N.A	0,15	0,00	0,00
Compostos fenólicos	mg/L	40	N.A	61,10	0,00	0,00
CBO ₅ (20ºC)	mg/L	500	N.A	1 830,00	291,19	7 005,60
Hg	mg/L	2.0	N.A	0,00	0,00	0,00
Fe	mg/L	2.0	N.A	2,29	0,00	0,00
Cr (Total) (2)	mg/L	2.0	0,01 - 0,15 ⁽⁴⁾	0,03	0,00	0,00
Cr (VI)	mg/L	0.1	0,01 - 0,05 ⁽⁴⁾	0,00	0,00	0,00
Mn	mg/L	2.0	N.A	10,00	0,00	0,00
Cu	mg/L	1.0	N.A	0,04	0,00	0,00
Pb	mg/L	1.0	N.A	0,07	0,00	0,00
Zn	mg/L	2.0	0,05 - 0.6 ⁽⁴⁾	1,48	0,00	0,00
As	mg/L	1.0	N.A	0,02	0,00	0,00
Se ⁽²⁾	mg/L	0.05	N.A	0,00	0,00	0,00
Cd	mg/L	0.2	N.A	0,01	0,00	0,00
Ni	mg/L	2.0	0,05 - 0,4 ⁽⁴⁾	20,00	0,00	0,00
Al	mg/L	10.0	N.A	2,37	0,00	0,00
Cn ⁽²⁾	mg/L	0.5	N.A	0,00	0,00	0,00
Se ⁽²⁾	mg/L	0.05	N.A	0,00	0,00	0,00
Azoto amoniacal	mg/L	125	N.A	50,00	0,00	29,12

Parâmetro	Unidade	VLE (RARISA)	VEA-MTD	Águas Residual Industrial ⁽¹⁾	Águas Residuais Domésticas	Condensado de NMP ⁽³⁾
Azoto total	mg/L	190	N.A	1 200,00	0,00	48,53
Fósforo total	mg/L	20.0	N.A	50,00	0,00	14,56
Sulfatos	mg/L	2000	N.A	0,00	0,00	0,00
F-	mg/L	N.A	2 - 25 ⁽⁴⁾	30,00	0,00	0,00
Co	mg/L	N.A	N.A	10,00	0,00	0,00
Li	mg/L	N.A	N.A	2,45	0,00	0,00
AOX ⁽²⁾	mg/L	N.A	0,1 - 0,4 ⁽⁴⁾	0,00	0,00	0,00
Óleos minerais ⁽²⁾	mg/L	15.0	N.A	0,00	0,00	0,00
1,2- dicloroetano (DCE) (2)	mg/L	0.2	N.A	0,00	0,00	0,00
Detergentes (lauril-sulfatos)	mg/L	10.0	N.A	0,00	0,00	0,00
Cloretos ⁽²⁾	mg/L	1000	N.A	0,00	0,00	0,00
DDT	μG/L	0.2	N.A	0,00	0,00	0,00
Condutividade	μS/cm	3000	N.A	260,00	<3000	0,00
Coliformes fecais	UCF/100mL	1.00E+08	N.A	0,00	9,71E+09	0,00
Temperatura	ōС	40	N.A	<40	<40	<40

 $^{^{(1)}}$ Valores médio estabelecidos com base em análises de qualidade de águas residuais brutas de fábricas em operação na China

A caracterização das águas residuais domésticas baseou-se nas capitações de carga poluente apresentadas no quadro seguinte, considerando um total de 1800 trabalhadores.

Tabela 3.4 – Capitações de carga poluente (águas residuais domésticas)

Parâmetro	Unidade	Valor
CBO ₅	g/(hab.dia)	60
CQO	g/(hab.dia)	135
SST	g/(hab.dia)	90
N _{total}	g/(hab.dia)	10
P _{total}	g/(hab.dia)	3
Óleos e gorduras	g/(hab.dia)	10
Coliformes fecais	NMP/(hab.dia)	2.00E+09

Com base nas cargas de CQO nos efluentes brutos de cada categoria, foi determinada a capacidade de tratamento da ETAR em termos de população equivalente, como se observa na tabela seguinte.

⁽²⁾Não é previsível a ocorrência deste parâmetro, considerando as análises de qualidade de águas residuais brutas de fábricas em operação na China

⁽³⁾ Concentração de NMP no condensado = 4000 mg/L (Carência teórica de oxigénio = 2,502 mg/mg)

⁽⁴⁾Considerou-se como VEA o valor máximo do intervalo

Tabela 3.5 – População equivalente

Parâmetro	Unidade	Água residual industrial	Condensado de NMP	Água residual doméstica
Caudal	m³/dia	102,7	90,0	370,9
CQO	mg/L	15 000	10 008	655
	kg/dia	1 540,1	900,7	243,0
HE	hab	11 400	6 700,00	1 800
Total				19 900 hab. eq.

4 PRÉ-DIMENSIONAMENTO HIDRÁULICO E SANITÁRIO DO ESQUEMA DE TRATAMENTO

Este capítulo é destinado à apresentação do dimensionamento hidráulico-sanitário da solução escolhida para a ETAR da fábrica da CALB.

Todos os dimensionamentos das estruturas foram feitos tendo em conta os dados de base e os objetivos de qualidade estabelecidos pelo regulamento de descarga das Águas de Santo André (RARISA) e os valores de emissão associados às melhores técnicas disponíveis (VEA-MTD).

4.1 EQUALIZAÇÃO E HOMOGENEIZAÇÃO DOS CAUDAIS AFLUENTES

De modo a assegurar a homogeneização das cargas afluentes à ETAR, bem como permitir que o caudal enviado para cada operação unitária seja o mais constante possível, foram previstos três tanques de equalização e homogeneização:

- Tanque de equalização e homogeneização 1 equalização e homogeneização do efluente industrial bruto (102,7 m³/dia) antes da etapa de coagulaçãofloculação;
- Tanque de equalização e homogeneização 2 equalização do condensado de NMP (90 m³/dia) e homogeneização com o efluente industrial pré-tratado proveniente da coagulação-floculação (102,7 m³/dia);
- Tanque de equalização e homogeneização 3 equalização do efluente doméstico bruto (370,9 m³/dia) e homogeneização com a água residual de processo pré-tratada (efluente industrial e condensado de NMP, com um caudal total de 192 m³/dia).

Na determinação do volume mínimo de cada tanque, considerou-se o cenário mais desfavorável, assumindo que um terço do caudal diário produzido na fábrica aflui à ETAR durante 1h no final de cada turno de 8 horas.

Na tabela seguinte apresentam-se os volumes determinados para cada um dos tanques, incluindo volume de equalização e de submergência mínima dos grupos eletrobomba e do arejador submersível.

Tabela 4.1 – Tanques de equalização e homogeneização

Parâmetro	Unidade	Tanque 1	Tanque 2	Tanque 3
Caudal de entrada durante 1h	m³/h	30	24	187,9
Caudal de saída durante 1h	m³/h	3,75	3	23,5
Volume equalização mínimo	h	26,3	21,0	164,4
Comprimento	m	3,0	3,0	3,0
Largura	m	3,0	3,0	6
Altura útil	m	3,0	3,0	6
Nível mínimo de proteção da bomba	m	0,8	0,8	0,8

Parâmetro	Unidade	Tanque 1	Tanque 2	Tanque 3
Altura da lâmina líquida	m	3,8	3,8	3,8
Volume útil	m	34	30	137
Volume total	m	36	36	148

Adicionalmente, preconizou-se um tanque de emergência com capacidade total de 325 m³ (autonomia de cerca de 14 horas), que estará preparado para receber toda a água residual produzida na fábrica em caso de necessidade de paragem da ETAR. Neste cenário, uma vez que os três diferentes tipos de água residual serão misturados no mesmo tanque, o efluente resultante será encaminhado diretamente para o tratamento biológico, o que poderá implicar que , temporariamente, a água residual tratada apresente características correspondentes a uma classe de qualidade inferior à Classe III.

4.2 PRÉ-TRATAMENTO

A primeira etapa de pré-tratamento corresponde às operações unitárias de coagulação, floculação e decantação da água residual industrial bruta proveniente do primeiro tanque de homogeneização e equalização. O seu principal objetivo é a remoção de grande parte das partículas sólidas em suspensão (nomeadamente SST e metais pesados), apresentando também uma eficiência elevada de remoção de CQO.

É de notar que o condensado de NMP não é submetido a esta etapa uma vez que o NMP é solúvel em água, o que faz com a coagulação-floculação não seja eficaz na sua remoção.

As operações de coagulação, floculação e decantação serão duplicadas em série, por forma a possibilitar que o efluente seja submetido a dois ajustes de pH (um em cada uma das câmaras de coagulação), otimizando assim a detenção de partículas que floculam mais facilmente em gamas diferentes de pH.

Desta forma, o efluente industrial bruto (102 ³/dia) é elevado a partir do tanque e encaminhado para a primeira câmara de mistura rápida, onde será doseado com NaOH para aumentar o pH para valores entre 10,5 – 11,5 (gama de pH ótima para coagulação de níquel, cobalto e manganês). Adicionalmente, será também feito o doseamento de PAC como coagulante. De seguida, o efluente é encaminhado para a câmara e mistura lenta, onde se dá a floculação, sendo doseado floculante e reagentes de retenção de metais pesados. Após a floculação, o efluente segue para o decantador, onde se dá a sedimentação dos flocos que são posteriormente extraídos e encaminhados graviticamente para a linha de lamas.

A segunda fase de coagulação, floculação e decantação será exatamente igual à primeira (incluindo dimensionamento dos tanques), com a exceção do ajuste de pH, que será feito para uma gama de 7,0 - 8,0, através do doseamento de ácido clorídrico.

Prevê-se que no decantador a jusante das câmaras de coagulação e floculação ocorra uma remoção significativa de CQO (50%,), CBO_5 (40%), SST (60%,), P_t (35%), metais pesados (50%) e, ainda, alguma remoção de N_t (7%).

Na Tabela 4.10 é possível observar a caracterização das águas residuais industriais, antes e depois da etapa de coagulação-floculação, para cada um dos parâmetros presentes no regulamento descarga e dos VEA-MTD.

Nas tabelas seguinte apresenta-se o resultado do dimensionamento efetuado para o pré-tratamento físico-químico, aplicado ao efluente industrial bruto.

Tabela 4.2 – Câmara de mistura rápida (coagulação)

Parâmetro	Unidade	Valor		
Número de linhas	un	1		
Critérios de dimensionam	ento			
	m³/dia	102,7		
Caudal	m³/h	4,28		
Caudal	m³/s	0,001		
	l/s	1		
Gradiente médio de velocidade	s ⁻¹	500 a 1000		
Tompo do rotonoão	S	60 a 120		
Tempo de retenção	min	>1		
Coeficiente de viscosidade absoluta (15ºC)	N.s/m ²	1,17E-03		
Dimensionamento				
Câmara de mistura rápida				
Volume unitário	m^3	0,2139		
Tempo de retenção hidráulico	S	180,00		
Altura útil	m	0,8		
Área útil	m	0,27		
Largura	m	0,50		
Comprimento	m	0,53		
Agitador				
G	-	900		
Potência útil mínima do agitador	kW	0,20		

Tabela 4.3 - Câmara de mistura lenta (floculação)

Parâmetro	Unidade	Valor
Nº de linhas	nº	1
Critérios de dime	nsionamento)
	m³/dia	102,7
Caudal	m³/h	4,278
	m³/s	0,029
	I/s	29
Tomas de retenção	S	1200
Tempo de retenção	min	20,0
Gradiente médio de velocidade	s ⁻¹	30 a 120

Parâmetro	Unidade	Valor
Tempo de retenção total	min	≥ 15
GxT	-	30 000 a 110 000
Número de estágios	-	1
Número de linhas independentes	-	1
Dimensiona	mento	
Câmara de mistura lenta		
Comprimento	m	1,2
Largura	m	1,2
Altura	m	1,5
Volume de cada câmara	m³	2,1
Tempo de retenção hidraúlico	S	1800,0
Agitador		
G	S ⁻¹	100,0
Potência útil	kW	0,03

Tabela 4.4 - Decantação

Parâmetro	Unidade	Valor
Número de decantadores em funcionamento	-	1
Caudais e cargas afluentes		
Caudal médio diário total - Qm	m³/dia	102,7
Caudal médio diário, por linha de tratamento - Qm	m³/dia	102,7
Caudal médio diário horário, por linha de tratamento - Qm	m³/h	4,3
Caudal médio diário total horário	m³/h	47
Concentração de MLSS nos reatores biológicos - SS _{RB}	kg/m³	4,00
Índice volumétrico de lamas / SVI	ml/g	150
Remoção de CQO	%	50%
Remoção de CBO₅	%	40%
Remoção de SST	%	60%
Remoção de Pt	%	35%
Características geométricas dos decantadores retangulares		
Carga hidráulica	m³/m².d	30
Largura	m	1,5
Área útil	m²	3,4
Comprimento	m	2,3
Altura	m	3
Volume calculado	m³	10,3
Verificação carga hidráulica	m³/m².d	30,00
Tempo de retenção	h	2,40
Velocidade de escoamento	m/s	0,063
Coeficiente de coesão	-	0,05

Parâmetro	Unidade	Valor
Gravidade específica	-	1,25
Aceleração da gravidade	m/s²	9,81
Diâmetro das partículas	m	0,0001
Factor de fricção Darcy-Weisbach	-	0,025
V_h	m/s	0,006
Verificação das condições de funcionamento dos d	ecantadores	j
Carga hidráulica ao Qm	$m^3/(m^2.h)$	1,25
Carga de sólidos ao Qm	Kg/(m².h)	5,00
Carga volumétrica de lamas - SVL ao Qm	I/(m².h)	750
Tempo de retenção ao Qm	h	2

4.2.1 REATOR COMPÓSITO DE HIDRÓLISE ANAERÓBIA

Após a etapa de coagulação-floculação, o efluente industrial pré-tratado (102 m³/dia) é encaminhado para o segundo tanque de equalização e homogeneização, onde será misturado com o condensado de NMP (90 m³/dia), possibilitando assim a sua homogeneização e diluição das respetivas cargas poluentes. As características do efluente resultante desta homogeneização, assim como as características do efluente tratado no reator compósito, podem ser observados na Tabela 4.10.

De seguida, o caudal resultante (192 m³/dia) será elevado para a o reator compósito de hidrólise anaeróbia, onde irá ocorrer a degradação da matéria orgânica associada ao condensado de NMP.

O princípio de funcionamento do reator consiste em controlar o processo anaeróbio na fase de acidificação da hidrólise, em que polímeros (matéria orgânica de grande dimensão molecular) são decompostos em monómeros, através da ação de enzimas hidrolíticas. Desta forma, é possível transformar o NMP, que é difícil de biodegradar, em matéria orgânica de pequena dimensão molecular, melhorando assim a biodegradabilidade das águas residuais.

Na tabela seguinte apresentam-se as principais características do reator compósito de hidrólise anaeróbia.

Tabela 4.5 – Reator compósito de hidrólise anaeróbia

Parâmetro	Unidade	Valor
	m³/dia	192,68
Caudal	m³/h	8,0
	m³/s	0,002
Nº de linhas	nº	1
Características geomé	tricas do reator	
Diâmetro - parte cilíndrica	m	3,00
Área superficial útil	m²	7,1
Altura útil	m	6,5

Parâmetro	Unidade	Valor
Volume útil	m³	46
Tempo de retenção hidráulica	h	5,7
Remoção de CQO	%	35%
Remoção de CBO5	%	40%
Carga de CQO removida no reator	kg/dia	584,8
Carga de CBO5 removida no reator	kg/dia	297,3
Carga de CQO afluente ao reator biológico	kg/dia	1086,0
Carga de CBO5 afluente ao reator biológico	kg/dia	445,9
Concentração de CQO final	mg/L	5 636,5
Concentração de CBO5 final	mg/L	2 314,5

4.3 TRATAMENTO BIOLÓGICO

As águas residuais provenientes do reator compósito de hidrólise anaeróbio (efluente industrial pré-tratado e condensado de NMP) serão encaminhados para o terceiro tanque de equalização e homogeneização, onde se dará a homogeneização com o caudal de águas residuais domésticas (371 m³/dia). O efluente resultante da homogeneização (que corresponde às águas residuais e condensado de NMP após prétratamento, e ao efluente doméstico bruto, perfazendo um total de 563 m³/dia), será elevado para os reatores biológicos, cujo dimensionamento é apresentado nos subcapítulos seguintes.

O pré-tratamento aplicado à agua residual industrial e ao condensado de NMP, assim como a sua posterior diluição com a água residual doméstica, permite obter uma água residual cujas razões CQO/CBO_5 e CBO_5/N_t são típicas de um efluente doméstico (2,4 e 4,18, respetivamente), contribuindo assim para o bom funcionamento do tratamento biológico.

Na tabela resumo 4.10 é possível observar as características de qualidade da água residual afluente aos reatores biológicos, assim como a eficiência de remoção exigida ao tratamento biológico, por forma obter um efluente tratado compatível com a Classe III do regulamento da AdSA.

4.3.1 REATOR BIOLÓGICO ANAERÓBIO

Tal como foi apresentado anteriormente na Tabela 3.3, a concentração de fósforo presente nas água industrial bruta é de 50 mg/L, o que é superior ao VLE de 20 mg/L estabelecido no regulamento de descarga da AdSA. No entanto, após a coagulação-floculação e posterior diluição com o condensado de NMP e com a água residual doméstica bruta, prevê-se que a concentração de fósforo imediatamente a montante do tratamento biológico seja de cerca de 15,50 mg/L, não sendo necessário prever a remoção biológica deste parâmetro.

Contudo, dada a eficiência dos sistemas anaeróbios na remoção de carga poluente, nomeadamente CQO e CBO₅, e considerando as concentrações destes dois parâmetros na água residual afluente ao tratamento biológico, foi preconizado um tanque anaeróbio na linha de tratamento.

4.3.2 REATOR BIOLÓGICO ANÓXICO - TANQUE DE DESNITRIFICAÇÃO

Por forma a otimizar o volume total do reator biológico necessário e garantir as concentrações de azoto, nas suas diversas formas, requeridas pelo regulamento de descarga, otimizando-se o processo de desnitrificação, a linha de tratamento integrará um reator anóxico, no qual as águas residuais provenientes do reator anaeróbio correspondente serão misturados com um fluxo de biomassa rica em nitratos, provenientes do final do reator aeróbio.

Tendo em conta as razões CQO/N_{kj} e CQO/CBO₅ na afluência e o perfil expectável para as temperaturas médias das águas residuais (domésticas e industriais), o volume do tanque de desnitrificação representará mais de 20% do volume total do reator biológico.

Desta forma, os constituintes mais facilmente biodegradáveis das águas residuais serão imediatamente disponibilizados ao processo de desnitrificação, resultando em taxas de desnitrificação elevadas.

A manutenção da biomassa em suspensão será garantida através de agitadores submersíveis instaladas em cada um dos reatores existentes na linha de tratamento.

4.3.3 REATOR BIOLÓGICO AERÓBIO - TANQUE DE AREJAMENTO

Após o reator de desnitrificação, a mistura de águas residuais e lamas ativadas será exposta a condições de aerobiose nos reatores aeróbios.

Neste reator ocorre o processo de nitrificação, para além da remoção da carga orgânica e estabilização aeróbia das lamas.

O oxigénio necessário será fornecido através de 1+1 compressores instalado na sala dos compressores. O controle do arejamento será realizado em função das concentrações de amónia e oxigénio dissolvido, monitorizadas em contínuo no reator biológico.

4.3.4 REATOR DE MEMBRANAS MBR

O efluente biológico tratado alimentará os tanques de membranas MBR, através de um orifício submerso localizado na entrada de cada um dos tanques.

A tecnologia MBR distingue-se das restantes por conseguir atingir um efluente de excelente qualidade, sendo muito eficiente na remoção de CBO₅, SST, coliformes fecais, entre outros.

Adicionalmente, a tecnologia MBR funciona com elevados valores de MLSS e idades de lamas nos reatores biológicos, uma vez que o processo de clarificação não está limitado pela decantação convencional, mas por filtração na superfície das membranas.

Geralmente, um dos requisitos desta tecnologia é a necessidade de ter uma tamisação fina de 1 mm no pré-tratamento, bem como uma operação de desengorduramento no sentido de prevenir a deterioração precoce das membranas. No entanto, uma vez que os efluentes brutos não apresentam grossos, e que as cozinhas dos refeitórios serão equipadas com separador de gorduras, considerou-se não ser necessário incluir essas etapas na linha de tratamento.

Em termos de dimensionamento e funcionamento do reator biológico, este é idêntico ao de umas lamas ativadas convencionais mas com uma concentração de sólidos suspensos no licor misto mais elevada (10 kg/m³ de MLSS), conduzindo a uma maior idade de lamas para igual volume de reator.

4.3.5 AREJAMENTO E AGITAÇÃO

A capacidade de oxigenação foi determinada com base nas necessidades em termos da oxidação da matéria orgânica, no oxigénio necessário à nitrificação e no balanço associado aos processos de nitrificação e desnitrificação.

O oxigénio necessário para a oxidação da matéria orgânica e para a nitrificação, será fornecido através de 1 compressor equipado com variação de velocidade, 50 a 100 % da capacidade de oxigenação nominal, e cujo funcionamento será automático.

Independentemente das necessidades de oxigenação, serão sempre asseguradas as condições mínimas de agitação nos tanques de arejamento, para garantir a manutenção da biomassa em suspensão.

4.3.6 EXTRAÇÃO DE LAMAS EM EXCESSO

As lamas em excesso serão extraídas diretamente a partir do reator biológico.

Serão previstas, no reator biológico, (1+1) bombas submersíveis, preconizando-se uma extração de lamas biológicas em 6 h/dia, durante 5 dias por semana.

Uma vez que, no tratamento biológico, um dos principais objetivos de controlo é a manutenção de uma idade de lamas adequada ao correto funcionamento do processo de degradação da matéria orgânica e do processo de nitrificação / desnitrificação, prevêse a instalação de medidores de caudal eletromagnéticos nos circuitos de compressão de lamas em excesso para o espessamento gravítico. Adicionalmente, uma vez que a extração de lamas em excesso será realizada diretamente a partir do reator biológico, essas medições permitem não só realizar a totalização diária do caudal de lamas em excesso, como também definir qual a idade de lamas a que o sistema se encontra a ser operado.

Apresenta-se no quadro seguinte um resumo do dimensionamento do tratamento biológico descrito nos subpontos anteriores.

Tabela 4.6 -Dimensionamento do tratamento biológico

Parâmetro	Unidades	Valor
Caudais		
Caudal médio diário total - Qm	m³/dia	564
Caudal proveniente do tanque de equalização	m³/h	23
Capacidade relativa de cada linha de reatores biológicos	%	100
Temperaturas		
Temperatura mínima do licor misto	ōC	14
Temperatura máxima do licor misto	ōC	22
Elevação média da ETAR		
Elevação média (zona dos reatores biológicos)	m	46
SST		
Carga de SST afluentes à ETAR	kg/dia	1 155
Carga de SST devida à recirculação de escorrências	kg/dia	243
Carga de SST afluente ao tratamento biológico	kg/dia	1 398
Concentração de SST afluente ao tratamento	mg/L	2 480
CBO ₅		
Carga de CBO5 afluentes ao tratamento biológico	kg/dia	554
Carga de CBO ₅ devida à recirculação de escorrências	kg/dia	100
Carga de CBO5 afluente ao tratamento biológico (incluindo recirculação de		
escorrências)	kg/dia	654
Carga de CBO₅ afluente ao tratamento biológico por linha de tratamento -	kg/dia	654
industrial e doméstico		
Concentração de CBO5 afluente ao tratamento biológico	mg/L	1 160
Carga total de CBO₅ no efluente final tratado	kg/dia	85
Carga de CBO5 que é necessário ser removida no tratamento biológico, por linha	kg/dia	569
de tratamento Carga total de CBO₅ removida no tratamento biológico (CBO₅e - CBO₅s)	kg/dia	569
	Kg/ ula	303
Balanço de massas de N _{total}		
Carga de NT afluente à ETAR / ao tratamento biológico	kg/dia	133
Carga de NT devida à recirculação de escorrências	kg/dia	25
Carga de NT afluente ao tratamento biológico	kg/dia	158
Carga de NT afluente ao tratamento biológico por linha de tratamento	kg/dia	158
Concentração de NT afluente ao tratamento biológico	mg/L	235
Concentração de NT no efluente final tratado	mg/L	190
Carga de NT no efluente final tratado, por linha de tratamento	kg/dia	107
Concentração de Norgânico (solúvel) no efluente final tratado	mg/L	38
Carga de Norg (solúvel) no efluente final tratado, por linha de tratamento	kg/dia	21
Percentagem de NT nas lamas biológicas	%	5
Carga de NT removido com as lamas em excesso, por linha de tratamento	kg/dia	28
Carga de NT necessária desnitrificar (NTe - NTs), por linha de tratamento	kg/dia	91,3
Concentração de NT necessária desnitrificar (NTe - NTs), por linha de tratamento	mg/L	162,04
Balanço de massas de P _{total}		
Carga de PT afluente à ETAR / ao tratamento biológico	kg/dia	9
Eficiência de remoção de PT no pré-tratamento	%	40

Parâmetro	Unidades	Valor
Carga de PT devida à recirculação de escorrências	kg/dia	1,2
Carga de PT afluente ao tratamento biológico (incluindo recirculação de escorrências)	kg/dia	10
Carga de PT afluente ao tratamento biológico por linha de tratamento	kg/dia	10
Concentração de PT afluente ao tratamento biológico	mg/L	18
Concentração de PT no efluente final tratado	mg/L	20,0
Carga de PT admissível no efluente final tratado	kg/dia	11,27
Remoção específca de PT devido ao crescimento de bactérias heterotróficas nos reatores	kg PT/ (kg CBO₅.dia)	0,01
Carga de PT removida devido ao crescimento das bactérias heterotróficas	kg/dia	7
Remoção específca de PT nos reatores anaeróbios	kg PT/ (kg CBO₅.dia)	0,01
Carga de PT removida nos reatores anaeróbios	kg/dia	7
Volume total dos reatores: Anaeróbio + Anóxico + Aeróbio	m³	1 888
NT a desnitrificar / CBO₅ afluente	=	0,14
Vanóxico / Vtotal	-	0,36
Tanque anaeróbio		,
Tempo de retenção hidráulica	h	2,0
Volume unitário dos reatores anaeróbios	m³	47
Volume total dos reatores anaeróbios	m³	47
Altura útil	m	6
Área útil unitária	m²	8
Comprimento útil unitário	m	3,5
Largura útil unitária	m	2,2
Tanque anóxico de desnitrificação		
Taxa específica de desnitrificação a 20ºC - SDNR	kg NO₃-N/(kg MLVSS.dia)	0,040
Taxa específica de desnitrificação à temperatura T - SDNR _T	kg NO₃-N/(kg MLVSS.dia)	0,034
MLVSS no reator anóxico	kg/m³	4,0
Volume unitário dos tanques anóxicos	m³	666
Volume total dos tanques anóxicos	m³	666
Altura útil	m	6
Área útil unitária	m²	111
Comprimento útil unitário	m	7,7
Largura útil unitária	m	14,4
Tanque aeróbio de nitrificação		
Consumo específico de CBO5 na desnitrificação	kgCBO ₅ / kgNO ₃ -N	3,50
Carga de CBO₅ removida no tanque anóxico / desnitrificação	kgCBO₅ / dia	320
Carga de CBO₅ removida no tanque anaeróbio	kgCBO₅ / dia	261
Carga de CBO₅ afluente ao reator aeróbio	kgCBO₅ / dia	73
MLVSS no reator aeróbio	kg MLVSS / m³	8,5
Relação MLVSS / MLSS	- · -	0,85
MLSS no reator aeróbio	kg MLSS / m³	10
Volume unitário dos tanques aeróbios	m ³	1 175
Volume total dos tanques aeróbios	m³	1 175
Altura útil	m	7
Área útil unitária	m²	168

Parâmetro	Unidades	Valor
Comprimento útil unitário	m	10,0
Largura útil unitária	m	16,8
F/M no reator aeróbio	Kg CBO₅/ (KgMLVSS.dia)	0,01
r/ini no reator aerobio	Kg CBO₅/ (KgMLSS.dia)	0,01
F/V no reator aeróbio	Kg CBO ₅ / (m³.dia)	0,06
Taxa específica de nitrificação a 20ºC - SNR	kg NH ₄ -N/(kg MLVSS.dia)	0,03
Taxa específica de nitrificação à temperatura T - SNR _T	kg NH₄-N/(kg MLVSS.dia)	0,026
Carga de NH ₄ afluente ao reator aeróbio, por linha de tratamento	kg NH ₄ -N/dia	126
Concentração de NH₄ afluente ao reator aeróbio, por linha de tratamento	mg NH ₄ -N/L	224
Carga máxima de NH ₄ nitrificado, por linha de tratamento	kg NH ₄ -N/dia	257
Verificação do volume	-	OK
Altura útil	m	4,00
Área útil	m²	294
Comprimento	m	14,5
Largura	m	12
Membranas		
Fluxo médio efetivo - Jnet	L/(m².h)	20,0
Área específica de cada módulo de membranas	m²/módulo	1038
Necessicade específica de arejamento anti-colmatação - SAD	m³/(m².h)	0,2
Área de membranas necessária	m²	1 174
Número de módulos necessários	módulos	2
Necessidades de ar para evitar a colmatação das membranas	m³/min	4
	m³/h	236
Altura útil	m	4,00
Área útil unitária	m²	40,25
Comprimento útil unitário	m	12
Largura útil unitária	m	4
Volume útil total	m	161
Produção de lamas		
Produção total de lamas, por linha de tratamento	kg SST /dia	589
Produção total de lamas	kg SST /dia	589
SST / CBO_5 afluente ao tratamento biológico	kg SST / Kg CBO₅	2,14
Produção específica de lamas em excesso	kg SST / Kg CBO₅ removida	1,00
Produção de lamas em excesso (WAS) por linha de tratamento	kg SST /dia	569
Produção total de lamas em excesso (WAS) por linha de tratamento	kg SST /dia	569
Produção específica de lamas devido à remoção biológica de fósforo	kg SST / Kg P removido	3,00
Produção total de lamas devido à remoção biológica de fósforo, por linha de tratamento	kg SST /dia	20
Produção total de lamas devido à remoção biológica de fósforo	kg SST /dia	20
Concentração de lamas admitida nos reatores das membranas	kg/m³	12,5

Parâmetro	Unidades	Valor
Peso especifico das lamas secundárias	kg/m³	1 015
	m³/dia	46
Caudal de lamas totais em excesso, por linha de tratamento	m³/h	1,9
	L/s	0,54
Caudal de lamas totais em excesso	m³/dia	46
Idade de lamas		
Idade das lamas - Or_aerob	dias	20,6
Idade das lamas - Or_total (zona anóxica + arejada)	dias	24,8
Recirculação externa - reatores das membranas -> reatores aeróbios e / ou seletores		
Razão de recirculação externa - R	-	4,0
	m³/dia	2 254
Caudal de recirculação total - Q _R , por linha de tratamento	m³/h	94
	L/s	26
Recirculação interna - reatores aeróbios -> reatores anóxicos		
Razão de recirculação interna - IR	-	1,5
	m³/dia	845
Caudal de recirculação interna total - Q _{IR} , por linha de tratamento	m³/h	35
	L/s	10
Recirculação interna - reatores anóxicos -> reatores anaeróbios		
Razão de recirculação interna - IRAA	=	1,0
Caudal de recirculação interna total - Q _{IRAA} , por linha de tratamento	m³/dia	564
	m³/h	23
	L/s	7
Alcalinidade		
Alcalinidade admitida para a água residual	mg CaCO₃/I	390
Consumo específico de alcalinidade na nitrificação	g CaCO ₃ / g NO ₃ -N	7,14
Produção específica de alcalinidade na desnitrificação	g CaCO ₃ / g NO ₃ -N	3,57
Alcalinidade necessária nos reactores para manter um pH = 7	mg CaCO₃/I	80
Dosagem necessária de alcalinidade (≤0)	mg CaCO3/I	Sim
Necessidades de oxigénio - reatores aeróbios - A	OTR	
Consumo específico de O₂ para remoção de CBO₅ - a'	kg O₂ / kg CBO₅ removido	0,70
Fator de ponta da CBO₅	=	1,20
Consumo específico de O ₂ para nitrificação	kg O ₂ / kg NH ₄ -N	4,30
Fator de ponta de N total	-	1,30
Consumo específico de O ₂ devido à respiração endógena - b'	kg O₂ / (kg MLVSS.dia)	0,08
Produção específica de O₂ na desnitrificação	kg O ₂ / kg NO ₃ -N	2,86
		•
Produção de O₂ na desnitrificação	kg O₂/h	11
Oxigénio requerido - AOTR (Actual Oxygen Transfer Rate) - condições médias por	kg O ₂ /dia	1 580
inha de tratamento	kg O₂/h	66

Parâmetro	Unidades	Valor
Oxigénio requerido - AOTR (Actual Oxygen Transfer Rate) - condições médias totais	kg O₂/h	66
Oxigénio requerido - AOTR (Actual Oxygen Transfer Rate) - <u>Incluindo balanço</u> <u>com a desnitrificação</u>	kg O₂/h	65
Oxigénio requerido - AOTR (Actual Oxygen Transfer Rate) - <u>Incluindo balanço</u> <u>com a desnitrificação</u>	kg O₂/h	65
Necessidades de oxigénio - reatores aeróbios - S	OTR	
Factor de conversão de AOTR para SOTR - α (quociente constante de velociadade no licor misto / água limpa)	-	0,45
Factor de conversão de AOTR para SOTR - β (quociente concentração no licor misto / água limpa)	-	0,98
Concentração inicial de O ₂ no licor misto - CO	mg/l	2,00
Concentração de saturação de O₂ na água limpa e em condições padrão a 20ºC - C20	mg/l	9,08
Fator correctivo - Tmax	-	3,23
Oxigénio requerido - SOTR (Standard Oxygen Transfer Rate) - <u>Verão</u> -	kg O₂/h	210
Caudal de ar necessário - reatores aeróbios		
Caudal de ar por difusor	m³/h	5,65
Densidade de difusores	%	13,60
Número de difusores por linha de tratamento	nº	426
SOTE (Standard Oxygen Transfer Efficiency)	%	35
Percentagem de O ₂ no ar	%	21
Massa específica do ar a Tmáx do licor misto e elevação da ETAR	kg/m³	1,190
Consider the content of the content	m³/min	40
Caudal de ar total necessário na entrada dos sobrepressores -	m³/h	2 406
Potência necessária para arejamento / agitação - reatore	s aeróbios	
Capacidade específica de oxigenação - SAE (Standard Aeration Efficiency)	kg O₂/kwh	4,50
Potência necessária para arejamento, por linha de tratamento	kW	47
Potência total necessária para arejamento	kW	47
Potência específica para agitação nas zonas aeróbias	W/m³	25
Potência necessária para agitação, por linha de tratamento	kW	29
Potência necessária para agitação, total	kW	29
Agitadores necessários?	-	Não
Potência necessária para agitação - reatores anóxicos		
Potência específica para agitação nas zonas anóxicas	W/m³	10
Potência total necessária para agitação das zonas anóxicas	kW	7

4.4 PRODUÇÃO DE LAMAS

A tabela seguinte apresenta um resumo das quantidades de lamas químicas e biológicas produzidas na ETAR que serão encaminhadas para o tratamento de lamas.

Tabela 4.7 - Produção e lamas mistas

Parâmetro	Unidade	Valor					
Lamas secundárias em excesso							
Carga diária de lamas totais em excesso	kg/dia	569					
Concentração das lamas no reator biológico	kg/m³	12,50					
Peso especifico das lamas secundárias	m³/h	1 015					
Caudal de lamas totais em excesso	m³/dia	45					
Lamas químicas							
Carga diária de lamas químicas	kg/dia	1 663					
Concentração das lamas no fundo dos decantadores primários	kg/m³	15,00					
Peso especifico das lamas primárias	m³/h	1020					
Caudal de lamas totais primárias	m³/dia	109					
Lamas totais a espessar							
Carga média diária total de lamas	kg/dia	2232					
Caudal médio diário total de lamas	m³/dia	153,57					
Concentração média de lamas a espessar	kg/m³	15					
Lamas espessadas							
Carga média diária total de lamas	kg/dia	2009					
Caudal médio diário total de lamas	m³/dia	76,54					
Concentração média de lamas espessadas	kg/m³	26					
Lamas totais desidratadas							
Carga média diária total de SST nas lamas	kg SST /dia	1929					
Caudal médio diário total de lamas	m³/dia	9,00					
Concentração média de MS nas lamas desidratadas	kg SST /dia	214					
Massa média diária de lamas desidratadas	ton lamas / dia	9,5					

4.5 ESPESSAMENTO GRAVÍTICO DAS LAMAS MISTAS

As lamas primárias, extraídas dos decantadores a jusante da coagulação-floculação, assim como as lamas em excesso, extraídas do reator biológico, serão espessadas num espessador gravítico, instalado no edifício T1.

As escorrências do espessamento serão conduzidas, por gravidade, para o respetivo circuito, até à entrada do tratamento biológico.

No quadro seguinte apresenta-se um resumo do dimensionamento efetuado para a operação de espessamento de lamas.

Tabela 4.8 – Dimensionamento do espessamento gravítico das lamas mistas produzidas na ETAR

Parâmetro	Unidades	Valor
Linha de tratamento / Espessador	-	EG1
Capacidade relativa de cada espessador gravítico	%	100,0
Carga média diária total de lamas	kg/dia	2 232
Carga máxima diária total de lamas	kg/dia	2 232
Carga horária de lamas	kg/h	93
Caudal médio diário total de lamas	m³/dia	154
Caudal máximo diário total de lamas	m³/dia	154
Caudal horário de lamas	m³/h	6,4
Diâmetro - parte cilíndrica	m	6,00
Diâmetro chaminé central	m	0,90
Área superficial útil	m²	27,6
Altura útil - parte cilíndrica	m	2,9
Volume útil - parte cilíndrica	m³	79
Altura do cone - parte tronco-cónica	m	0,50
Diâmetro inferior - parte troco-cónica	m	1,9
Inclinação do fundo	%	24,4
Volume útil - parte tronco-cónica	m³	6,7
Volume útil total (sem fossa de lamas)	m³	86
Altura - fossa de lamas	m	0,46
Diâmetro inferior - fossa de lamas	m	0,6
Volume	m³	0,6
Carga diária de sólidos - Qmd	kg SST/(m².dia)	80,8
Carga horária de sólidos	kg SST/(m².h)	3,4
Carga hidráulica superficial diária - Qmd	m ³ /(m ² .dia)	5,6
Carga hidráulica superficial horária	m³/(m².h)	0,2
Tempo diário de retenção - Qmd	dia	0,2
Tempo diário de retenção - Qm	dia	0,6
Tempo de retenção horário	h	13,4
Tempo de retengao norano		13,4
Eficiência de remoção de sólidos	%	90
Carga média de sólidos removidos, por espessador - Qmd	kg/dia	2 009
Carga média total de sólidos removidos - Qmd	kg/dia	2 009
Peso especifico das lamas espessadas	kg/m³	1 050
Concentração das lamas espessadas	%	2,5
Caudal médio diário de lamas espessadas, por espessador - Qmd	m³/dia	76,5
Caudal médio diário total de lamas espessadas - Qmd	m³/dia	77
Caudal máximo diário total de lamas espessadas - Qmd	m³/dia	77
Capitação média diária de lamas espessadas	l/(hab.dia)	5,40
Caudal médio diário de sobrenadante - Qmd	m³/dia	77

4.6 DESIDRATAÇÃO MECÂNICA DAS LAMAS ESPESSADAS

Tendo por base a produção de lamas espessadas e um funcionamento da etapa de desidratação mecânica de 6h/dia, 5 dias/semana, será instalada uma centrífuga com uma capacidade instalada de 2,1 m³/h.

O grau de desidratação expectável para os equipamentos situar-se-á nos 22 %MS (p/v), com uma eficiência de captura de sólidos de 95 %.

É prevista a instalação de medidores de caudal eletromagnéticos no circuito de alimentação da centrífuga.

Todos os equipamentos associados à linha de desidratação (incluindo o grupo eletrobomba de lamas desidratadas e os de dosagem de polímero para desidratação) serão controlados a partir de um autómato que estabelecerá uma interface entre eles. O arranque e paragem da sequência de desidratação só poderá ser desencadeado localmente.

O sistema de supervisão central receberá unicamente informações sobre o estado de funcionamento dos equipamentos e permitirá a paragem remota da linha de desidratação (que no entanto se desencadeará pela sequência de paragem préestabelecida).

As escorrências da desidratação, assim como as águas das lavagens diárias da centrífuga, serão encaminhados graviticamente para o circuito de escorrências que aflui ao tratamento biológico.

Apresenta-se no quadro seguinte um resumo do dimensionamento efetuado para a operação unitária de desidratação de lamas.

Tabela 4.9 – Dimensionamento da desidratação mecânica de lamas

Parâmetro	Unidades	Valor
Dados de base		
Carga média diária de SST espessados por centrífuga	kg/dia	2 009
Caudal médio diário de lama a desidratar	m³/dia	76,54
Dias de funcionamento da centrífuga por semana	dia	5
Carga de SST por dia de funcionamento da centrífuga	kg/dia	2 813
Caudal de lama a desidratar por dia de funcionamento da centrífuga	m³/dia	107
Tempo de funcionamento médio diário das centrífugas (em simultâneo)	h	6
Caudal de alimentação da centrífuga	m³/h	17,9
Concentração mínima de SST na lama desidratada	%	20
Eficiência da centrífuga	%	95
Peso específico da lama desidratada	kg/m³	1 060
Lamas desidratadas		
Volume médio de lama desidratada por dia de funcionamento	m³/dia	12,6
da centrífuga	m³/h	2,1
Volume médio de lamas desidratadas - 7 dias por semana	m³/dia	9,0
Volume de 10 dias de lamas desidratadas	m³	126,1
Volume do silo de lamas desidratadas (incluir cal)	m³	180
Largura do silo	m	4
Altura útil dos silos	m	7,3

Parâmetro	Unidades	Valor
Carga média de lama desidratada por dia de funcionamento da	kg SST/dia	2 685
centrífuga	kg SST/h	447
Carga média de lamas desidratadas - 7 dias por semana	kg SST/dia	1 929
Produção média de lama desidratada por dia de	ton lama /dia	13,4
funcionamento das centrífugas	-	
Produção média de lamas desidratadas - 7 dias por semana	ton lama /dia	9,5
Volume médio mensal de lamas desidratadas	m³/mês	275
Produção média mensal de lamas desidratadas	ton lama /mês	291
Escorrências		
Caudal médio horário de escorrências da desidratação	m³/h	18,7
Caudal médio diário de escorrências por dia de funcionamento da centrífuga	m³/dia	112,3
Caudal médio diário total de escorrências - 7 dias por semana	m³/dia	80,2
Carga média horário de SST nas escorrências	kg SST/h	23,4
Carga média diária de SST nas escorrências por dia de funcioanamento da centrífuga	kgSST/dia	141
Carga média diária de SST nas escorrências - 7 dias por semana	kgSST/dia	100
Preparação e dosagem de polímero o	catiónico	
Dosagem de polímero	kg/ton SST	4,5
Quantidade média de polímero por dia de funcionamento da centrífuga	kg/dia	12,7
Quantidade média de polímero - 7 dias por semana	kg/dia	9,0
Peso específico do polímero	kg/m³	800
Polímero catiónico em pó	<u>. </u>	
Volume de produto comercial, por dia de funcionamento da	1/4:-	15.0
centrífuga	l/dia	15,8
Volume de produto comercial - 7 dias por semana	l/dia	11,3
Fornecimento em sacos de 25 kg	kg	25
Sacos necessários por dia - 7 dias por semana	nº	0,36
Reserva para 1 mês - média	kg /mês	276
neserva para i mes - media	I/mês	345
Altura de empilhamento dos sacos	m	1,5
Superfície necessária para armazenamento dos sacos de um mês - média	m²	0,23
Sacos necessários por mês - média	nº	11
Solução a preparar - Unidade automática de preparação / ma catiónico	aturação e dosagem de po	olímero
	% (M/M)	0,50
Concentração da solução de polímero a preparar	kg de produto /kg de solução	0,0050
Massa da solução a preparar por dia de funcionamento da		2.522
centrífuga	kg/d	2 532
Peso específico da solução	kg/m³	1 000
Volume da solução por dia de funcionamento da centrífuga	l/dia	2 532
Unidade automática de preparação / maturação e dosagem de polímero catiónico	nº	1
Tempos de maturação	min	120

Parâmetro	Unidades	Valor								
Factor multiplicativo correspondente ao tempo de maturação de 45 min	-	4								
Capacidade teórica da unidade automática - condições máximas	I	422								
Capacidade necessária para a unidade automática	1	30								
Solução a dosear durante a desidratação - Bo	Solução a dosear durante a desidratação - Bombas doseadoras									
Caudal da solução a dosear - máximo	l/h	422								
Folga da bomba doseadora	%	20								
Caudal das bombas doseadoras (envolvente superior)	l/h	506								
Caudal da solução a dosear - médio	l/h	422								
Folga da bomba doseadora	%	-20								
Caudal das bombas doseadoras (envolvente inferior)	L/h	338								
Número de bombas doseadoras de parafuso por centrífuga	nº	(1+1)								
Gama de caudais das bombas doseadoras de polímero	l/h	340 a 510								
Solução a dosear durante a desidratação - Paine	l de diluição em linha									
	% (P/P)	0,07								
Concentração da solução de floculante a dosear	kg de produto /kg de solução	0,0007								
Caudal total a dosear - 7 dias por semana	l/dia	12 658								
Caudal a dosear	l/h	2 954								
Caudal de água de diluição	l/h	2 532								
Capacidade do painel de diluição	m³/h	4,0								

1.7 RESUMO

Tabela 4.10 – Resumo da qualidade das águas residuais (brutas e após diluição e tratamento)

				Água Residual Bruta			Efluente após-tratamento						
Parâmetro	Unidades	VLE (RARISA)	VEA-MTD	Água Residual Industrial ⁽¹⁾	Água Residual Doméstica	Condensado NMP ⁽³⁾	Água Residual Industrial pré- tratada	Água Residual Industrial pré-tratada + Condensado de NMP bruto	Água Residual Industrial pré- tratada + Condensado de NMP após hidrólise anaeróbia	Afluente ao tratamento biológico (Água Residual Industrial pré- tratada + Condensado de NMP após hidrólise anaeróbia + AR doméstica bruta	% Remoção assegurada pelo tratamento biológico	Efluente final tratado	
Caudal	m³/day	-	-	102,68	370,89	90,00	102,68	192,68	192,68	563,57	-	563,57	
pH ^(*)	Sorensen scale	6-9	-	7,4	7,0	8,5 – 10,0	6-9	6-9	6-9	6-9	-	6-9	
CQO*	mg/L	300,00	-	15 000,00	655,18	10 008,00	7 500,00	8 671,50	5 636,47	2 358,22	≈95%	≤118	
SST	mg/L	200,00	-	27 000,00	436,79	17,18	10 800,00	5 763,30	5 763,30	2 049,98	≈95%	≤102,5	
Óleos e gorduras	mg/L	20,00	-	0,00	50,00	0,00	0,00	0,00	0,00	32,91	≈39%	≤20,00	
Sulfuretos	mg/L	4,00	-	0,15	0,00	0,00	0,15	0,08	0,08	0,03	90%	≈0,00	
Compostos fenólicos	mg/L	10,00	-	61,10	0,00	0,00	61,10	32,56	32,56	11,13	≈90%	≤1	
CBO ₅ (20°C)	mg/L	150,00	-	1 830,00	291,19	7 005,60	1 098,00	3 857,47	2 314,48	982,93	≈95%	≤70	
Hg	mg/L	2,0	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	≈80%	≤0,00	
Fe	mg/L	2,0	-	2,29	0,00	0,00	0,92	0,49	0,49	0,17	≈80%	≤0,03	
Cr (Total)	mg/L	2,0	0,15	0,03	0,00	0,00	0,01	0,01	0,01	0,00	≈80%	≤0,0	
Cr (VI)	mg/L	0,10	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	≈80%	≤0,0	
Mn	mg/L	2,0	-	10,00	0,00	0,00	4,00	2,13	2,13	0,73	≈80%	≤0,15	
Cu	mg/L	1,0	-	0,04	0,00	0,00	0,02	0,01	0,01	0,00	≈80%	≈0,0	
Pb	mg/L	1,0	-	0,07	0,00	0,00	0,03	0,01	0,01	0,01	≈80%	≈0,0	
Zn	mg/L	2,0	0,6	1,48	0,00	0,00	0,59	0,32	0,32	0,11	≈80%	≤0,02	
As	mg/L	1,0	-	0,02	0,00	0,00	0,01	0,00	0,00	0,00	≈80%	≈0,0	
Se	mg/L	0,05	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	≈80%	≈0,0	
Cd	mg/L	0,20	-	0,01	0,00	0,00	0,00	0,00	0,00	0,00	≈80%	≈0,0	
Ni	mg/L	2,0	0,4	20,00	0,00	0,00	8,00	4,26	4,26	1,46	≈80%	≤0,29	
Al	mg/L	10,0	-	2,37	0,00	0,00	0,95	0,51	0,51	0,17	≈80%	≤0,03	
Cn ⁽²⁾	mg/L	0,50	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	≈80%	≈0,0	
Azoto Amoniacal	mg/L	125,0	-	50,00	29,12	0,00	50,00	26,64	26,64	28,27	≈80%	≤6	
Azoto total	mg/L	190,0	-	1 200,00	48,53	0,00	1 116,00	594,71	594,71	235,26	≈80%	≤47	
Fósforo total	mg/L	20,0	-	50,00	14,56	0,00	32,50	17,32	17,32	15,50	≈97%	≤0,5	
Sulfatos ⁽²⁾	mg/L	2 000,0	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-	
F-	mg/L	-	25,0	30,00	0,00	0,00	30,00	15,99	15,99	5,47	≈80%	≤1,1	
Со	mg/L	-	-	10,00	0,00	0,00	10,00	5,33	5,33	1,82	-	-	
Li	mg/L	-	-	2,45	0,00	0,00	2,45	1,31	1,31	0,45	-	-	
AOX ⁽²⁾	mg/L	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-	
Óleos minerais ⁽²⁾	mg/L	15,0	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-	
1,2- dicloroetano (DCE) ⁽²⁾	mg/L	0,20	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-	

				Água Residual Bruta			Efluente após-tratamento					
Parâmetro	Unidades	VLE (RARISA)	VEA-MTD	Água Residual Industrial ⁽¹⁾	Água Residual Doméstica	Condensado NMP ⁽³⁾	Água Residual Industrial pré- tratada	Água Residual Industrial pré-tratada + Condensado de NMP bruto	Água Residual Industrial pré- tratada + Condensado de NMP após hidrólise anaeróbia	Afluente ao tratamento biológico (Água Residual Industrial pré- tratada + Condensado de NMP após hidrólise anaeróbia + AR doméstica bruta	% Remoção assegurada pelo tratamento biológico	Efluente final tratado ≤3 000,00 ≤100
Detergentes (lauril-sulfatos)	mg/L	10,0	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-
Cloretos ⁽²⁾	mg/L	1 000,0	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-
DDT ⁽²⁾	μG/L	0,20	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	-
Condutividade	μS/cm	3 000,00	-	260,00	<3000	0,00	≤260,00	≤3 000,00	≤3 000,00	≤3 000,00	-	≤3 000,00
Coliformes fecais	UCF/100mL	1,00E+08	-	0,00	9 706 381 946,13	0,00	0,00	0,00	0,00	0,00	≈100%	≤100
Temperatura	ōС	40,00	-	22,80	17,00	20,00	22,80	0,00	0,00	0,00	-	≤40,00

⁽¹⁾ Valores médio estabelecidos com base em análises de qualidade de águas residuais brutas de fábricas em operação na China

⁽²⁾ Não é previsível a ocorrência deste parâmetro, considerando as análises de qualidade de águas residuais brutas de fábricas em operação na China

⁽³⁾ Concentração de NMP no condensado = 4000 mg/L (Carência teórica de oxigénio = 2,502 mg/mg)

5 CONSIDERAÇÕES FINAIS

Em qualquer caso de omissão, serão respeitadas as normas técnicas em vigor.

Quaisquer dúvida que possa surgir, no âmbito do presente projeto, será esclarecida pelo responsável técnico do mesmo.

Em todos os casos de omissão, serão observadas as leis, regulamentos e normas vigentes, bem como os preceitos da arte e da estética na execução das obras de que trata este projeto.